ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.07648
  4. Cited By
Machine Learning in Transaction Monitoring: The Prospect of xAI

Machine Learning in Transaction Monitoring: The Prospect of xAI

14 October 2022
Julie Gerlings
Ioanna D. Constantiou
ArXivPDFHTML

Papers citing "Machine Learning in Transaction Monitoring: The Prospect of xAI"

16 / 16 papers shown
Title
Sibyl: Understanding and Addressing the Usability Challenges of Machine
  Learning In High-Stakes Decision Making
Sibyl: Understanding and Addressing the Usability Challenges of Machine Learning In High-Stakes Decision Making
Alexandra Zytek
Dongyu Liu
R. Vaithianathan
K. Veeramachaneni
19
48
0
02 Mar 2021
Reviewing the Need for Explainable Artificial Intelligence (xAI)
Reviewing the Need for Explainable Artificial Intelligence (xAI)
Julie Gerlings
Arisa Shollo
Ioanna D. Constantiou
31
73
0
02 Dec 2020
The Pragmatic Turn in Explainable Artificial Intelligence (XAI)
The Pragmatic Turn in Explainable Artificial Intelligence (XAI)
Andrés Páez
38
192
0
22 Feb 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
69
6,178
0
22 Oct 2019
Bias in Bios: A Case Study of Semantic Representation Bias in a
  High-Stakes Setting
Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting
Maria De-Arteaga
Alexey Romanov
Hanna M. Wallach
J. Chayes
C. Borgs
Alexandra Chouldechova
S. Geyik
K. Kenthapadi
Adam Tauman Kalai
111
449
0
27 Jan 2019
Scalable Graph Learning for Anti-Money Laundering: A First Look
Scalable Graph Learning for Anti-Money Laundering: A First Look
Mark Weber
Jie Chen
Toyotaro Suzumura
A. Pareja
Tengfei Ma
H. Kanezashi
Tim Kaler
C. E. Leiserson
Tao B. Schardl
21
101
0
30 Nov 2018
Machine Decisions and Human Consequences
Machine Decisions and Human Consequences
Teresa Scantamburlo
A. Charlesworth
N. Cristianini
FaML
21
20
0
16 Nov 2018
On the Robustness of Interpretability Methods
On the Robustness of Interpretability Methods
David Alvarez-Melis
Tommi Jaakkola
43
524
0
21 Jun 2018
Explaining Explanations: An Overview of Interpretability of Machine
  Learning
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
61
1,849
0
31 May 2018
Explainable AI: Beware of Inmates Running the Asylum Or: How I Learnt to
  Stop Worrying and Love the Social and Behavioural Sciences
Explainable AI: Beware of Inmates Running the Asylum Or: How I Learnt to Stop Worrying and Love the Social and Behavioural Sciences
Tim Miller
Piers Howe
L. Sonenberg
AI4TS
SyDa
29
373
0
02 Dec 2017
Explainable Artificial Intelligence: Understanding, Visualizing and
  Interpreting Deep Learning Models
Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models
Wojciech Samek
Thomas Wiegand
K. Müller
XAI
VLM
43
1,186
0
28 Aug 2017
Explanation in Artificial Intelligence: Insights from the Social
  Sciences
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
210
4,229
0
22 Jun 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
276
21,459
0
22 May 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
334
3,742
0
28 Feb 2017
The Mythos of Model Interpretability
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
78
3,672
0
10 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
338
16,765
0
16 Feb 2016
1