Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.06441
Cited By
How Much Data Are Augmentations Worth? An Investigation into Scaling Laws, Invariance, and Implicit Regularization
12 October 2022
Jonas Geiping
Micah Goldblum
Gowthami Somepalli
Ravid Shwartz-Ziv
Tom Goldstein
A. Wilson
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How Much Data Are Augmentations Worth? An Investigation into Scaling Laws, Invariance, and Implicit Regularization"
22 / 22 papers shown
Title
Synthio: Augmenting Small-Scale Audio Classification Datasets with Synthetic Data
Sreyan Ghosh
Sonal Kumar
Zhifeng Kong
Rafael Valle
Bryan Catanzaro
Dinesh Manocha
DiffM
92
3
0
02 Oct 2024
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
Sanyam Kapoor
Wesley J. Maddox
Pavel Izmailov
A. Wilson
BDL
UD
63
51
0
30 Mar 2022
A Data-Augmentation Is Worth A Thousand Samples: Exact Quantification From Analytical Augmented Sample Moments
Randall Balestriero
Ishan Misra
Yann LeCun
57
20
0
16 Feb 2022
Patches Are All You Need?
Asher Trockman
J. Zico Kolter
ViT
257
410
0
24 Jan 2022
Swin Transformer V2: Scaling Up Capacity and Resolution
Ze Liu
Han Hu
Yutong Lin
Zhuliang Yao
Zhenda Xie
...
Yue Cao
Zheng Zhang
Li Dong
Furu Wei
B. Guo
ViT
207
1,809
0
18 Nov 2021
ResNet strikes back: An improved training procedure in timm
Ross Wightman
Hugo Touvron
Hervé Jégou
AI4TS
248
495
0
01 Oct 2021
Stochastic Training is Not Necessary for Generalization
Jonas Geiping
Micah Goldblum
Phillip E. Pope
Michael Moeller
Tom Goldstein
131
75
0
29 Sep 2021
How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers
Andreas Steiner
Alexander Kolesnikov
Xiaohua Zhai
Ross Wightman
Jakob Uszkoreit
Lucas Beyer
ViT
107
632
0
18 Jun 2021
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
57
268
0
11 Jun 2021
Drawing Multiple Augmentation Samples Per Image During Training Efficiently Decreases Test Error
Stanislav Fort
Andrew Brock
Razvan Pascanu
Soham De
Samuel L. Smith
50
32
0
27 May 2021
Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data
Marc Finzi
Samuel Stanton
Pavel Izmailov
A. Wilson
116
323
0
25 Feb 2020
General
E
(
2
)
E(2)
E
(
2
)
-Equivariant Steerable CNNs
Maurice Weiler
Gabriele Cesa
110
524
0
19 Nov 2019
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
221
3,485
0
30 Sep 2019
Further advantages of data augmentation on convolutional neural networks
Alex Hernández-García
Peter König
55
108
0
26 Jun 2019
AutoAugment: Learning Augmentation Policies from Data
E. D. Cubuk
Barret Zoph
Dandelion Mané
Vijay Vasudevan
Quoc V. Le
119
1,771
0
24 May 2018
A Kernel Theory of Modern Data Augmentation
Tri Dao
Albert Gu
Alexander J. Ratner
Virginia Smith
Christopher De Sa
Christopher Ré
100
193
0
16 Mar 2018
Three Factors Influencing Minima in SGD
Stanislaw Jastrzebski
Zachary Kenton
Devansh Arpit
Nicolas Ballas
Asja Fischer
Yoshua Bengio
Amos Storkey
76
463
0
13 Nov 2017
Improving Deep Learning using Generic Data Augmentation
Luke Taylor
G. Nitschke
49
383
0
20 Aug 2017
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
Chen Sun
Abhinav Shrivastava
Saurabh Singh
Abhinav Gupta
VLM
182
2,397
0
10 Jul 2017
Geometry of Optimization and Implicit Regularization in Deep Learning
Behnam Neyshabur
Ryota Tomioka
Ruslan Salakhutdinov
Nathan Srebro
AI4CE
65
133
0
08 May 2017
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.7K
39,509
0
01 Sep 2014
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
358
25,642
0
09 Jun 2011
1