ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.05938
  4. Cited By
Robust Models are less Over-Confident

Robust Models are less Over-Confident

12 October 2022
Julia Grabinski
Paul Gavrikov
J. Keuper
M. Keuper
    AAML
ArXivPDFHTML

Papers citing "Robust Models are less Over-Confident"

20 / 20 papers shown
Title
DispBench: Benchmarking Disparity Estimation to Synthetic Corruptions
DispBench: Benchmarking Disparity Estimation to Synthetic Corruptions
Shashank Agnihotri
Amaan Ansari
Annika Dackermann
Fabian Rösch
M. Keuper
50
0
0
08 May 2025
Are Synthetic Corruptions A Reliable Proxy For Real-World Corruptions?
Are Synthetic Corruptions A Reliable Proxy For Real-World Corruptions?
Shashank Agnihotri
David Schader
Nico Sharei
Mehmet Ege Kaçar
M. Keuper
41
2
0
07 May 2025
Beyond Accuracy: What Matters in Designing Well-Behaved Models?
Beyond Accuracy: What Matters in Designing Well-Behaved Models?
Robin Hesse
Doğukan Bağcı
Bernt Schiele
Simone Schaub-Meyer
Stefan Roth
VLM
62
0
0
21 Mar 2025
FAIR-TAT: Improving Model Fairness Using Targeted Adversarial Training
FAIR-TAT: Improving Model Fairness Using Targeted Adversarial Training
Tejaswini Medi
Steffen Jung
M. Keuper
AAML
44
3
0
30 Oct 2024
How Do Training Methods Influence the Utilization of Vision Models?
How Do Training Methods Influence the Utilization of Vision Models?
Paul Gavrikov
Shashank Agnihotri
M. Keuper
J. Keuper
26
2
0
18 Oct 2024
Batch-in-Batch: a new adversarial training framework for initial
  perturbation and sample selection
Batch-in-Batch: a new adversarial training framework for initial perturbation and sample selection
Yinting Wu
Pai Peng
Bo Cai
Le Li
.
AAML
39
0
0
06 Jun 2024
Towards Certification of Uncertainty Calibration under Adversarial Attacks
Towards Certification of Uncertainty Calibration under Adversarial Attacks
Cornelius Emde
Francesco Pinto
Thomas Lukasiewicz
Philip H. S. Torr
Adel Bibi
AAML
45
0
0
22 May 2024
The Over-Certainty Phenomenon in Modern UDA Algorithms
The Over-Certainty Phenomenon in Modern UDA Algorithms
Fin Amin
Jung-Eun Kim
32
0
0
24 Apr 2024
Enhancing Effectiveness and Robustness in a Low-Resource Regime via
  Decision-Boundary-aware Data Augmentation
Enhancing Effectiveness and Robustness in a Low-Resource Regime via Decision-Boundary-aware Data Augmentation
Kyohoon Jin
Junho Lee
Juhwan Choi
Sangmin Song
Youngbin Kim
40
0
0
22 Mar 2024
NoisyICL: A Little Noise in Model Parameters Calibrates In-context
  Learning
NoisyICL: A Little Noise in Model Parameters Calibrates In-context Learning
Yufeng Zhao
Yoshihiro Sakai
Naoya Inoue
33
3
0
08 Feb 2024
Empirical Validation of Conformal Prediction for Trustworthy Skin
  Lesions Classification
Empirical Validation of Conformal Prediction for Trustworthy Skin Lesions Classification
Jamil Fayyad
Shadi Alijani
H. Najjaran
OOD
44
6
0
12 Dec 2023
On the Interplay of Convolutional Padding and Adversarial Robustness
On the Interplay of Convolutional Padding and Adversarial Robustness
Paul Gavrikov
J. Keuper
AAML
23
3
0
12 Aug 2023
Annealing Self-Distillation Rectification Improves Adversarial Training
Annealing Self-Distillation Rectification Improves Adversarial Training
Yuehua Wu
Hung-Jui Wang
Shang-Tse Chen
AAML
24
3
0
20 May 2023
Detecting Political Opinions in Tweets through Bipartite Graph Analysis:
  A Skip Aggregation Graph Convolution Approach
Detecting Political Opinions in Tweets through Bipartite Graph Analysis: A Skip Aggregation Graph Convolution Approach
X. Peng
Zhenkun Zhou
Chong Zhang
Ke Xu
26
1
0
22 Apr 2023
Exploring Architectural Ingredients of Adversarially Robust Deep Neural
  Networks
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
46
100
0
07 Oct 2021
DL-Reg: A Deep Learning Regularization Technique using Linear Regression
DL-Reg: A Deep Learning Regularization Technique using Linear Regression
Maryam Dialameh
A. Hamzeh
Hossein Rahmani
16
3
0
31 Oct 2020
RobustBench: a standardized adversarial robustness benchmark
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
228
677
0
19 Oct 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,110
0
04 Nov 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
258
36,371
0
25 Aug 2016
1