Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.05938
Cited By
Robust Models are less Over-Confident
12 October 2022
Julia Grabinski
Paul Gavrikov
J. Keuper
M. Keuper
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robust Models are less Over-Confident"
20 / 20 papers shown
Title
DispBench: Benchmarking Disparity Estimation to Synthetic Corruptions
Shashank Agnihotri
Amaan Ansari
Annika Dackermann
Fabian Rösch
M. Keuper
50
0
0
08 May 2025
Are Synthetic Corruptions A Reliable Proxy For Real-World Corruptions?
Shashank Agnihotri
David Schader
Nico Sharei
Mehmet Ege Kaçar
M. Keuper
41
2
0
07 May 2025
Beyond Accuracy: What Matters in Designing Well-Behaved Models?
Robin Hesse
Doğukan Bağcı
Bernt Schiele
Simone Schaub-Meyer
Stefan Roth
VLM
62
0
0
21 Mar 2025
FAIR-TAT: Improving Model Fairness Using Targeted Adversarial Training
Tejaswini Medi
Steffen Jung
M. Keuper
AAML
44
3
0
30 Oct 2024
How Do Training Methods Influence the Utilization of Vision Models?
Paul Gavrikov
Shashank Agnihotri
M. Keuper
J. Keuper
26
2
0
18 Oct 2024
Batch-in-Batch: a new adversarial training framework for initial perturbation and sample selection
Yinting Wu
Pai Peng
Bo Cai
Le Li
.
AAML
39
0
0
06 Jun 2024
Towards Certification of Uncertainty Calibration under Adversarial Attacks
Cornelius Emde
Francesco Pinto
Thomas Lukasiewicz
Philip H. S. Torr
Adel Bibi
AAML
45
0
0
22 May 2024
The Over-Certainty Phenomenon in Modern UDA Algorithms
Fin Amin
Jung-Eun Kim
32
0
0
24 Apr 2024
Enhancing Effectiveness and Robustness in a Low-Resource Regime via Decision-Boundary-aware Data Augmentation
Kyohoon Jin
Junho Lee
Juhwan Choi
Sangmin Song
Youngbin Kim
40
0
0
22 Mar 2024
NoisyICL: A Little Noise in Model Parameters Calibrates In-context Learning
Yufeng Zhao
Yoshihiro Sakai
Naoya Inoue
33
3
0
08 Feb 2024
Empirical Validation of Conformal Prediction for Trustworthy Skin Lesions Classification
Jamil Fayyad
Shadi Alijani
H. Najjaran
OOD
44
6
0
12 Dec 2023
On the Interplay of Convolutional Padding and Adversarial Robustness
Paul Gavrikov
J. Keuper
AAML
23
3
0
12 Aug 2023
Annealing Self-Distillation Rectification Improves Adversarial Training
Yuehua Wu
Hung-Jui Wang
Shang-Tse Chen
AAML
24
3
0
20 May 2023
Detecting Political Opinions in Tweets through Bipartite Graph Analysis: A Skip Aggregation Graph Convolution Approach
X. Peng
Zhenkun Zhou
Chong Zhang
Ke Xu
26
1
0
22 Apr 2023
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
46
100
0
07 Oct 2021
DL-Reg: A Deep Learning Regularization Technique using Linear Regression
Maryam Dialameh
A. Hamzeh
Hossein Rahmani
16
3
0
31 Oct 2020
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
228
677
0
19 Oct 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,110
0
04 Nov 2016
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
258
36,371
0
25 Aug 2016
1