ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.04642
  4. Cited By
Exploration via Planning for Information about the Optimal Trajectory

Exploration via Planning for Information about the Optimal Trajectory

6 October 2022
Viraj Mehta
I. Char
J. Abbate
R. Conlin
M. Boyer
Stefano Ermon
J. Schneider
Willie Neiswanger
    OffRL
ArXiv (abs)PDFHTML

Papers citing "Exploration via Planning for Information about the Optimal Trajectory"

41 / 41 papers shown
Title
Increasing Information for Model Predictive Control with Semi-Markov Decision Processes
Increasing Information for Model Predictive Control with Semi-Markov Decision Processes
Rémy Hosseinkhan Boucher
Onofrio Semeraro
L. Mathelin
100
0
0
28 Jan 2025
Efficient Model-Based Reinforcement Learning Through Optimistic Thompson Sampling
Efficient Model-Based Reinforcement Learning Through Optimistic Thompson Sampling
Jasmine Bayrooti
Carl Henrik Ek
Amanda Prorok
158
0
0
07 Oct 2024
An Experimental Design Perspective on Model-Based Reinforcement Learning
An Experimental Design Perspective on Model-Based Reinforcement Learning
Viraj Mehta
Biswajit Paria
J. Schneider
Stefano Ermon
Willie Neiswanger
OffRL
65
21
0
09 Dec 2021
Anti-Concentrated Confidence Bonuses for Scalable Exploration
Anti-Concentrated Confidence Bonuses for Scalable Exploration
Jordan T. Ash
Cyril Zhang
Surbhi Goel
A. Krishnamurthy
Sham Kakade
86
6
0
21 Oct 2021
MBRL-Lib: A Modular Library for Model-based Reinforcement Learning
MBRL-Lib: A Modular Library for Model-based Reinforcement Learning
Luis Pineda
Brandon Amos
Amy Zhang
Nathan Lambert
Roberto Calandra
OffRL
77
47
0
20 Apr 2021
Bayesian Algorithm Execution: Estimating Computable Properties of
  Black-box Functions Using Mutual Information
Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mutual Information
Willie Neiswanger
Ke Alexander Wang
Stefano Ermon
MLAU
70
30
0
19 Apr 2021
Explore the Context: Optimal Data Collection for Context-Conditional
  Dynamics Models
Explore the Context: Optimal Data Collection for Context-Conditional Dynamics Models
Jan Achterhold
Joerg Stueckler
61
7
0
22 Feb 2021
Sample-efficient Cross-Entropy Method for Real-time Planning
Sample-efficient Cross-Entropy Method for Real-time Planning
Cristina Pinneri
Shambhuraj Sawant
Sebastian Blaes
Jan Achterhold
Joerg Stueckler
Michal Rolínek
Georg Martius
73
103
0
14 Aug 2020
SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
  Reinforcement Learning
SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep Reinforcement Learning
Kimin Lee
Michael Laskin
A. Srinivas
Pieter Abbeel
OffRL
74
203
0
09 Jul 2020
Neural Dynamical Systems: Balancing Structure and Flexibility in
  Physical Prediction
Neural Dynamical Systems: Balancing Structure and Flexibility in Physical Prediction
Viraj Mehta
I. Char
Willie Neiswanger
Youngseog Chung
A. Nelson
M. Boyer
E. Kolemen
J. Schneider
AI4CE
34
28
0
23 Jun 2020
Array Programming with NumPy
Array Programming with NumPy
Charles R. Harris
K. Millman
S. Walt
R. Gommers
Pauli Virtanen
...
Tyler Reddy
Warren Weckesser
Hameer Abbasi
C. Gohlke
T. Oliphant
156
15,026
0
18 Jun 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy
  Search and Planning
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
97
85
0
15 Jun 2020
Planning to Explore via Self-Supervised World Models
Planning to Explore via Self-Supervised World Models
Ramanan Sekar
Oleh Rybkin
Kostas Daniilidis
Pieter Abbeel
Danijar Hafner
Deepak Pathak
SSL
77
412
0
12 May 2020
Reinforcement Learning through Active Inference
Reinforcement Learning through Active Inference
Alexander Tschantz
Beren Millidge
A. Seth
Christopher L. Buckley
AI4CE
68
71
0
28 Feb 2020
Efficiently Sampling Functions from Gaussian Process Posteriors
Efficiently Sampling Functions from Gaussian Process Posteriors
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
59
165
0
21 Feb 2020
Ready Policy One: World Building Through Active Learning
Ready Policy One: World Building Through Active Learning
Philip J. Ball
Jack Parker-Holder
Aldo Pacchiano
K. Choromanski
Stephen J. Roberts
OffRL
81
49
0
07 Feb 2020
End-to-End Model-Free Reinforcement Learning for Urban Driving using
  Implicit Affordances
End-to-End Model-Free Reinforcement Learning for Urban Driving using Implicit Affordances
Marin Toromanoff
É. Wirbel
Fabien Moutarde
OffRL
140
209
0
25 Nov 2019
Receding Horizon Curiosity
Receding Horizon Curiosity
M. Schultheis
Boris Belousov
Hany Abdulsamad
Jan Peters
65
15
0
08 Oct 2019
When to Trust Your Model: Model-Based Policy Optimization
When to Trust Your Model: Model-Based Policy Optimization
Michael Janner
Justin Fu
Marvin Zhang
Sergey Levine
OffRL
109
957
0
19 Jun 2019
Self-Supervised Exploration via Disagreement
Self-Supervised Exploration via Disagreement
Deepak Pathak
Dhiraj Gandhi
Abhinav Gupta
SSL
83
384
0
10 Jun 2019
Model-Based Reinforcement Learning with a Generative Model is Minimax
  Optimal
Model-Based Reinforcement Learning with a Generative Model is Minimax Optimal
Alekh Agarwal
Sham Kakade
Lin F. Yang
OffRL
91
175
0
10 Jun 2019
Information-Directed Exploration for Deep Reinforcement Learning
Information-Directed Exploration for Deep Reinforcement Learning
Nikolay Nikolov
Johannes Kirschner
Felix Berkenkamp
Andreas Krause
61
72
0
18 Dec 2018
Exploration by Random Network Distillation
Exploration by Random Network Distillation
Yuri Burda
Harrison Edwards
Amos Storkey
Oleg Klimov
161
1,345
0
30 Oct 2018
Model-Based Active Exploration
Model-Based Active Exploration
Pranav Shyam
Wojciech Ja'skowski
Faustino J. Gomez
86
179
0
29 Oct 2018
Optimization of Molecules via Deep Reinforcement Learning
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
110
543
0
19 Oct 2018
Deep Reinforcement Learning in a Handful of Trials using Probabilistic
  Dynamics Models
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models
Kurtland Chua
Roberto Calandra
R. McAllister
Sergey Levine
BDL
230
1,284
0
30 May 2018
Addressing Function Approximation Error in Actor-Critic Methods
Addressing Function Approximation Error in Actor-Critic Methods
Scott Fujimoto
H. V. Hoof
David Meger
OffRL
189
5,218
0
26 Feb 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
317
8,420
0
04 Jan 2018
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
544
19,296
0
20 Jul 2017
Data-Efficient Reinforcement Learning with Probabilistic Model
  Predictive Control
Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
Sanket Kamthe
M. Deisenroth
148
217
0
20 Jun 2017
Curiosity-driven Exploration by Self-supervised Prediction
Curiosity-driven Exploration by Self-supervised Prediction
Deepak Pathak
Pulkit Agrawal
Alexei A. Efros
Trevor Darrell
LRMSSL
125
2,453
0
15 May 2017
Deep Exploration via Randomized Value Functions
Deep Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Daniel Russo
Zheng Wen
113
307
0
22 Mar 2017
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRLODL
223
5,087
0
05 Jun 2016
Deep Exploration via Bootstrapped DQN
Deep Exploration via Bootstrapped DQN
Ian Osband
Charles Blundell
Alexander Pritzel
Benjamin Van Roy
123
1,314
0
15 Feb 2016
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
327
13,289
0
09 Sep 2015
Predictive Entropy Search for Efficient Global Optimization of Black-box
  Functions
Predictive Entropy Search for Efficient Global Optimization of Black-box Functions
José Miguel Hernández-Lobato
Matthew W. Hoffman
Zoubin Ghahramani
107
648
0
10 Jun 2014
Learning to Optimize via Information-Directed Sampling
Learning to Optimize via Information-Directed Sampling
Daniel Russo
Benjamin Van Roy
167
284
0
21 Mar 2014
Playing Atari with Deep Reinforcement Learning
Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
Alex Graves
Ioannis Antonoglou
Daan Wierstra
Martin Riedmiller
129
12,269
0
19 Dec 2013
Model-Based Bayesian Exploration
Model-Based Bayesian Exploration
R. Dearden
N. Friedman
D. Andre
93
288
0
23 Jan 2013
Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based
  Search
Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search
A. Guez
David Silver
Peter Dayan
102
174
0
14 May 2012
Entropy Search for Information-Efficient Global Optimization
Entropy Search for Information-Efficient Global Optimization
Philipp Hennig
Christian J. Schuler
123
673
0
06 Dec 2011
1