ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.03510
  4. Cited By
Learning to Learn and Sample BRDFs

Learning to Learn and Sample BRDFs

7 October 2022
Chen Liu
Michael Fischer
Tobias Ritschel
    AI4CE
ArXivPDFHTML

Papers citing "Learning to Learn and Sample BRDFs"

28 / 28 papers shown
Title
Metappearance: Meta-Learning for Visual Appearance Reproduction
Metappearance: Meta-Learning for Visual Appearance Reproduction
Michael Fischer
Tobias Ritschel
3DH
42
10
0
19 Apr 2022
Active Exploration for Neural Global Illumination of Variable Scenes
Active Exploration for Neural Global Illumination of Variable Scenes
Stavros Diolatzis
Julien Philip
G. Drettakis
3DV
BDL
29
22
0
15 Mar 2022
Neural BRDFs: Representation and Operations
Neural BRDFs: Representation and Operations
Jiahui Fan
Beibei Wang
Miloš Hašan
Jian Yang
Ling-Qi Yan
AI4CE
46
6
0
06 Nov 2021
Fast Training of Neural Lumigraph Representations using Meta Learning
Fast Training of Neural Lumigraph Representations using Meta Learning
Alexander W. Bergman
Petr Kellnhofer
Gordon Wetzstein
86
40
0
28 Jun 2021
Real-time Neural Radiance Caching for Path Tracing
Real-time Neural Radiance Caching for Path Tracing
Thomas Müller
Fabrice Rousselle
Jan Novák
A. Keller
3DH
AI4CE
65
161
0
23 Jun 2021
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth
  Images
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images
Shaofei Wang
Marko Mihajlovic
Qianli Ma
Andreas Geiger
Siyu Tang
3DH
53
100
0
22 Jun 2021
Light Field Networks: Neural Scene Representations with
  Single-Evaluation Rendering
Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering
Vincent Sitzmann
Semon Rezchikov
William T. Freeman
J. Tenenbaum
F. Durand
3DV
159
294
0
04 Jun 2021
Generative Modelling of BRDF Textures from Flash Images
Generative Modelling of BRDF Textures from Flash Images
Philipp Henzler
Valentin Deschaintre
Niloy J. Mitra
Tobias Ritschel
3DV
50
66
0
23 Feb 2021
Neural BRDF Representation and Importance Sampling
Neural BRDF Representation and Importance Sampling
Alejandro Sztrajman
G. Rainer
Tobias Ritschel
Tim Weyrich
36
59
0
11 Feb 2021
Learned Initializations for Optimizing Coordinate-Based Neural
  Representations
Learned Initializations for Optimizing Coordinate-Based Neural Representations
Matthew Tancik
B. Mildenhall
Terrance Wang
Divi Schmidt
Pratul P. Srinivasan
Jonathan T. Barron
Ren Ng
99
290
0
03 Dec 2020
learn2learn: A Library for Meta-Learning Research
learn2learn: A Library for Meta-Learning Research
Sébastien M. R. Arnold
Praateek Mahajan
Debajyoti Datta
Ian Bunner
Konstantinos Saitas Zarkias
80
95
0
27 Aug 2020
Guided Fine-Tuning for Large-Scale Material Transfer
Guided Fine-Tuning for Large-Scale Material Transfer
Valentin Deschaintre
G. Drettakis
Adrien Bousseau
DiffM
3DV
65
52
0
06 Jul 2020
MetaSDF: Meta-learning Signed Distance Functions
MetaSDF: Meta-learning Signed Distance Functions
Vincent Sitzmann
E. R. Chan
Richard Tucker
Noah Snavely
Gordon Wetzstein
62
247
0
17 Jun 2020
Seeing the World in a Bag of Chips
Seeing the World in a Bag of Chips
Jeong Joon Park
Aleksander Holynski
S. M. Seitz
3DV
50
35
0
14 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
379
42,299
0
03 Dec 2019
Single-Image SVBRDF Capture with a Rendering-Aware Deep Network
Single-Image SVBRDF Capture with a Rendering-Aware Deep Network
Valentin Deschaintre
M. Aittala
F. Durand
G. Drettakis
Adrien Bousseau
3DH
44
266
0
23 Oct 2018
Deep Appearance Maps
Deep Appearance Maps
Maxim Maximov
Laura Leal-Taixé
Mario Fritz
Tobias Ritschel
3DH
FAtt
3DV
44
33
0
03 Apr 2018
Not All Samples Are Created Equal: Deep Learning with Importance
  Sampling
Not All Samples Are Created Equal: Deep Learning with Importance Sampling
Angelos Katharopoulos
François Fleuret
84
517
0
02 Mar 2018
Safe Adaptive Importance Sampling
Safe Adaptive Importance Sampling
Sebastian U. Stich
Anant Raj
Martin Jaggi
57
54
0
07 Nov 2017
Material Editing Using a Physically Based Rendering Network
Material Editing Using a Physically Based Rendering Network
Guilin Liu
Duygu Ceylan
Ersin Yumer
Jimei Yang
Jyh-Ming Lien
DiffM
47
94
0
01 Aug 2017
Meta-SGD: Learning to Learn Quickly for Few-Shot Learning
Meta-SGD: Learning to Learn Quickly for Few-Shot Learning
Zhenguo Li
Fengwei Zhou
Fei Chen
Hang Li
92
1,116
0
31 Jul 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
806
11,866
0
09 Mar 2017
SGDR: Stochastic Gradient Descent with Warm Restarts
SGDR: Stochastic Gradient Descent with Warm Restarts
I. Loshchilov
Frank Hutter
ODL
288
8,091
0
13 Aug 2016
Deep Reflectance Maps
Deep Reflectance Maps
Konstantinos Rematas
Tobias Ritschel
Mario Fritz
E. Gavves
Tinne Tuytelaars
62
103
0
13 Nov 2015
Online Learning to Sample
Online Learning to Sample
Guillaume Bouchard
Théo Trouillon
J. Perez
Adrien Gaidon
OffRL
OnRL
57
30
0
30 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
296
4,167
0
21 May 2015
Stochastic Optimization with Importance Sampling
Stochastic Optimization with Importance Sampling
P. Zhao
Tong Zhang
88
344
0
13 Jan 2014
Stochastic Gradient Descent, Weighted Sampling, and the Randomized
  Kaczmarz algorithm
Stochastic Gradient Descent, Weighted Sampling, and the Randomized Kaczmarz algorithm
Deanna Needell
Nathan Srebro
Rachel A. Ward
134
551
0
21 Oct 2013
1