ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.03155
  4. Cited By
Understanding Neural Coding on Latent Manifolds by Sharing Features and
  Dividing Ensembles

Understanding Neural Coding on Latent Manifolds by Sharing Features and Dividing Ensembles

6 October 2022
Martin Bjerke
Lukas Schott
Kristopher T. Jensen
Claudia Battistin
David A. Klindt
Benjamin A. Dunn
ArXivPDFHTML

Papers citing "Understanding Neural Coding on Latent Manifolds by Sharing Features and Dividing Ensembles"

7 / 7 papers shown
Title
Modeling Dynamic Neural Activity by combining Naturalistic Video Stimuli and Stimulus-independent Latent Factors
Modeling Dynamic Neural Activity by combining Naturalistic Video Stimuli and Stimulus-independent Latent Factors
Finn Schmidt
Suhas Shrinivasan
Polina Turishcheva
Fabian H. Sinz
145
1
0
21 Oct 2024
Neural Latents Benchmark '21: Evaluating latent variable models of
  neural population activity
Neural Latents Benchmark '21: Evaluating latent variable models of neural population activity
Felix Pei
Joel Ye
D. Zoltowski
Anqi Wu
Raeed H. Chowdhury
...
L. Miller
Jonathan W. Pillow
Il Memming Park
Eva L. Dyer
C. Pandarinath
259
88
0
09 Sep 2021
Towards robust vision by multi-task learning on monkey visual cortex
Towards robust vision by multi-task learning on monkey visual cortex
Shahd Safarani
Arne F. Nix
K. Willeke
Santiago A. Cadena
Kelli Restivo
George H. Denfield
A. Tolias
Fabian H. Sinz
OOD
56
53
0
29 Jul 2021
Learning identifiable and interpretable latent models of
  high-dimensional neural activity using pi-VAE
Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-VAE
Ding Zhou
Xue-Xin Wei
DRL
233
81
0
09 Nov 2020
ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on
  Nonlinear ICA
ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA
Ilyes Khemakhem
R. Monti
Diederik P. Kingma
Aapo Hyvarinen
CML
69
114
0
26 Feb 2020
On the Continuity of Rotation Representations in Neural Networks
On the Continuity of Rotation Representations in Neural Networks
Yi Zhou
Connelly Barnes
Jingwan Lu
Jimei Yang
Hao Li
3DH
73
1,289
0
17 Dec 2018
Hyperspherical Variational Auto-Encoders
Hyperspherical Variational Auto-Encoders
Tim R. Davidson
Luca Falorsi
Nicola De Cao
Thomas Kipf
Jakub M. Tomczak
DRL
BDL
104
384
0
03 Apr 2018
1