ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.02558
  4. Cited By
Improved Anomaly Detection by Using the Attention-Based Isolation Forest

Improved Anomaly Detection by Using the Attention-Based Isolation Forest

5 October 2022
Lev V. Utkin
A. Ageev
A. Konstantinov
ArXivPDFHTML

Papers citing "Improved Anomaly Detection by Using the Attention-Based Isolation Forest"

26 / 26 papers shown
Title
Self-Supervised Masked Convolutional Transformer Block for Anomaly
  Detection
Self-Supervised Masked Convolutional Transformer Block for Anomaly Detection
Neelu Madan
Nicolae-Cătălin Ristea
Radu Tudor Ionescu
Kamal Nasrollahi
Fahad Shahbaz Khan
T. Moeslund
M. Shah
ViT
MedIm
304
69
0
25 Sep 2022
AGBoost: Attention-based Modification of Gradient Boosting Machine
AGBoost: Attention-based Modification of Gradient Boosting Machine
A. Konstantinov
Lev V. Utkin
Stanislav R. Kirpichenko
ODL
31
7
0
12 Jul 2022
Attention and Self-Attention in Random Forests
Attention and Self-Attention in Random Forests
Lev V. Utkin
A. Konstantinov
49
5
0
09 Jul 2022
Deep Isolation Forest for Anomaly Detection
Deep Isolation Forest for Anomaly Detection
Hongzuo Xu
Guansong Pang
Yijie Wang
Yongjun Wang
66
198
0
14 Jun 2022
Self-Supervised Masking for Unsupervised Anomaly Detection and
  Localization
Self-Supervised Masking for Unsupervised Anomaly Detection and Localization
Chaoqin Huang
Qinwei Xu
Yanfeng Wang
Yu Wang
Ya Zhang
60
68
0
13 May 2022
Attention-based Random Forest and Contamination Model
Attention-based Random Forest and Contamination Model
Lev V. Utkin
A. Konstantinov
53
33
0
08 Jan 2022
Neural Attention Models in Deep Learning: Survey and Taxonomy
Neural Attention Models in Deep Learning: Survey and Taxonomy
Alana de Santana Correia
Esther Colombini
MLAU
43
18
0
11 Dec 2021
Self-Supervised Predictive Convolutional Attentive Block for Anomaly
  Detection
Self-Supervised Predictive Convolutional Attentive Block for Anomaly Detection
Nicolae-Cătălin Ristea
Neelu Madan
Radu Tudor Ionescu
Kamal Nasrollahi
Fahad Shahbaz Khan
T. Moeslund
M. Shah
69
193
0
17 Nov 2021
Generalized Out-of-Distribution Detection: A Survey
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
280
926
0
21 Oct 2021
Dive into Deep Learning
Dive into Deep Learning
Aston Zhang
Zachary Chase Lipton
Mu Li
Alexander J. Smola
VLM
77
568
0
21 Jun 2021
A Survey of Transformers
A Survey of Transformers
Tianyang Lin
Yuxin Wang
Xiangyang Liu
Xipeng Qiu
ViT
123
1,124
0
08 Jun 2021
Attention, please! A survey of Neural Attention Models in Deep Learning
Attention, please! A survey of Neural Attention Models in Deep Learning
Alana de Santana Correia
Esther Luna Colombini
HAI
52
187
0
31 Mar 2021
Understanding Attention: In Minds and Machines
Understanding Attention: In Minds and Machines
S. P. Sawant
Shruti Singh
38
1
0
04 Dec 2020
A Unifying Review of Deep and Shallow Anomaly Detection
A Unifying Review of Deep and Shallow Anomaly Detection
Lukas Ruff
Jacob R. Kauffmann
Robert A. Vandermeulen
G. Montavon
Wojciech Samek
Marius Kloft
Thomas G. Dietterich
Klaus-Robert Muller
UQCV
104
797
0
24 Sep 2020
Multivariate Time-series Anomaly Detection via Graph Attention Network
Multivariate Time-series Anomaly Detection via Graph Attention Network
Hang Zhao
Yujing Wang
Juanyong Duan
Congrui Huang
Defu Cao
Yunhai Tong
Bixiong Xu
Jing Bai
Jie Tong
Qi Zhang
AI4TS
44
432
0
04 Sep 2020
Deep Learning for Anomaly Detection: A Review
Deep Learning for Anomaly Detection: A Review
Guansong Pang
Chunhua Shen
LongBing Cao
Anton Van Den Hengel
178
923
0
06 Jul 2020
Random Features for Kernel Approximation: A Survey on Algorithms,
  Theory, and Beyond
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
95
174
0
23 Apr 2020
Anomaly Detection in Univariate Time-series: A Survey on the
  State-of-the-Art
Anomaly Detection in Univariate Time-series: A Survey on the State-of-the-Art
Mohammad Braei
Sebastian Wagner
AI4TS
26
194
0
01 Apr 2020
Functional Isolation Forest
Functional Isolation Forest
Guillaume Staerman
Pavlo Mozharovskyi
Stephan Clémençon
Florence dÁlché-Buc
347
45
0
09 Apr 2019
An Attentive Survey of Attention Models
An Attentive Survey of Attention Models
S. Chaudhari
Varun Mithal
Gungor Polatkan
R. Ramanath
124
657
0
05 Apr 2019
Deep Learning for Anomaly Detection: A Survey
Deep Learning for Anomaly Detection: A Survey
Raghavendra Chalapathy
Sanjay Chawla
AI4TS
154
1,494
0
10 Jan 2019
Extended Isolation Forest
Extended Isolation Forest
Li Tang
Konstantinos Konstantinidis
R. Brunner
143
290
0
06 Nov 2018
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
674
131,414
0
12 Jun 2017
Effective Approaches to Attention-based Neural Machine Translation
Effective Approaches to Attention-based Neural Machine Translation
Thang Luong
Hieu H. Pham
Christopher D. Manning
374
7,959
0
17 Aug 2015
Show, Attend and Tell: Neural Image Caption Generation with Visual
  Attention
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
Ke Xu
Jimmy Ba
Ryan Kiros
Kyunghyun Cho
Aaron Courville
Ruslan Salakhutdinov
R. Zemel
Yoshua Bengio
DiffM
334
10,067
0
10 Feb 2015
Neural Machine Translation by Jointly Learning to Align and Translate
Neural Machine Translation by Jointly Learning to Align and Translate
Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
AIMat
535
27,295
0
01 Sep 2014
1