ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.00580
  4. Cited By
GFlowNets and variational inference

GFlowNets and variational inference

2 October 2022
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
    BDL
ArXivPDFHTML

Papers citing "GFlowNets and variational inference"

35 / 35 papers shown
Title
Accurate and Diverse LLM Mathematical Reasoning via Automated PRM-Guided GFlowNets
Accurate and Diverse LLM Mathematical Reasoning via Automated PRM-Guided GFlowNets
Adam Younsi
Abdalgader Abubaker
M. Seddik
Hakim Hacid
Salem Lahlou
LRM
152
1
0
28 Apr 2025
Less is More: Adaptive Program Repair with Bug Localization and Preference Learning
Zhenlong Dai
Bingrui Chen
Zhuoluo Zhao
Xiu Tang
Sai Wu
Chang Yao
Zhipeng Gao
Jingyuan Chen
KELM
77
3
0
09 Mar 2025
FedGrAINS: Personalized SubGraph Federated Learning with Adaptive Neighbor Sampling
FedGrAINS: Personalized SubGraph Federated Learning with Adaptive Neighbor Sampling
Emir Ceyani
Han Xie
Baturalp Buyukates
Carl Yang
Salman Avestimehr
FedML
223
0
0
22 Jan 2025
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
95
8
0
10 Jan 2025
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Daniela de Albuquerque
John Pearson
DiffM
89
0
0
03 Jan 2025
Efficient Diversity-Preserving Diffusion Alignment via Gradient-Informed GFlowNets
Efficient Diversity-Preserving Diffusion Alignment via Gradient-Informed GFlowNets
Zhen Liu
Tim Z. Xiao
Weiyang Liu
Yoshua Bengio
Dinghuai Zhang
153
5
0
10 Dec 2024
Adaptive teachers for amortized samplers
Adaptive teachers for amortized samplers
Minsu Kim
Sanghyeok Choi
Taeyoung Yun
Emmanuel Bengio
Leo Feng
Jarrid Rector-Brooks
Sungsoo Ahn
Jinkyoo Park
Nikolay Malkin
Yoshua Bengio
390
7
0
02 Oct 2024
RetroGFN: Diverse and Feasible Retrosynthesis using GFlowNets
RetroGFN: Diverse and Feasible Retrosynthesis using GFlowNets
Piotr Gaiñski
Michał Koziarski
Krzysztof Maziarz
Marwin H. S. Segler
Jacek Tabor
Marek Śmieja
89
4
0
26 Jun 2024
Amortizing intractable inference in diffusion models for vision, language, and control
Amortizing intractable inference in diffusion models for vision, language, and control
S. Venkatraman
Moksh Jain
Luca Scimeca
Minsu Kim
Marcin Sendera
...
Alexandre Adam
Jarrid Rector-Brooks
Yoshua Bengio
Glen Berseth
Nikolay Malkin
110
30
0
31 May 2024
Ant Colony Sampling with GFlowNets for Combinatorial Optimization
Ant Colony Sampling with GFlowNets for Combinatorial Optimization
Minsu Kim
Sanghyeok Choi
Hyeon-Seob Kim
Jiwoo Son
Jinkyoo Park
Yoshua Bengio
79
30
0
11 Mar 2024
Improved off-policy training of diffusion samplers
Improved off-policy training of diffusion samplers
Marcin Sendera
Minsu Kim
Sarthak Mittal
Pablo Lemos
Luca Scimeca
Jarrid Rector-Brooks
Alexandre Adam
Yoshua Bengio
Nikolay Malkin
OffRL
100
24
0
07 Feb 2024
Unifying Generative Models with GFlowNets and Beyond
Unifying Generative Models with GFlowNets and Beyond
Dinghuai Zhang
Ricky T. Q. Chen
Nikolay Malkin
Yoshua Bengio
BDL
AI4CE
73
26
0
06 Sep 2022
Nested Variational Inference
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
55
21
0
21 Jun 2021
Flow Network based Generative Models for Non-Iterative Diverse Candidate
  Generation
Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation
Emmanuel Bengio
Moksh Jain
Maksym Korablyov
Doina Precup
Yoshua Bengio
83
327
0
08 Jun 2021
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them
  on Images
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
R. Child
BDL
VLM
177
350
0
20 Nov 2020
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
168
50
0
20 Oct 2020
NVAE: A Deep Hierarchical Variational Autoencoder
NVAE: A Deep Hierarchical Variational Autoencoder
Arash Vahdat
Jan Kautz
BDL
67
908
0
08 Jul 2020
Variational f-divergence Minimization
Variational f-divergence Minimization
Mingtian Zhang
Thomas Bird
Raza Habib
Tianlin Xu
David Barber
FedML
35
28
0
27 Jul 2019
The Thermodynamic Variational Objective
The Thermodynamic Variational Objective
Vaden Masrani
T. Le
Frank Wood
44
48
0
28 Jun 2019
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
570
3,112
0
04 Jun 2018
Semi-Implicit Variational Inference
Semi-Implicit Variational Inference
Mingzhang Yin
Mingyuan Zhou
BDL
69
128
0
28 May 2018
Variance Reduction for Policy Gradient with Action-Dependent Factorized
  Baselines
Variance Reduction for Policy Gradient with Action-Dependent Factorized Baselines
Cathy Wu
Aravind Rajeswaran
Yan Duan
Vikash Kumar
Alexandre M. Bayen
Sham Kakade
Igor Mordatch
Pieter Abbeel
OffRL
53
153
0
20 Mar 2018
Tighter Variational Bounds are Not Necessarily Better
Tighter Variational Bounds are Not Necessarily Better
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank Wood
Yee Whye Teh
DRL
138
198
0
13 Feb 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
317
1,367
0
12 Feb 2018
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
151
690
0
15 Nov 2017
Backpropagation through the Void: Optimizing control variates for
  black-box gradient estimation
Backpropagation through the Void: Optimizing control variates for black-box gradient estimation
Will Grathwohl
Dami Choi
Yuhuai Wu
Geoffrey Roeder
David Duvenaud
89
300
0
31 Oct 2017
Operator Variational Inference
Operator Variational Inference
Rajesh Ranganath
Jaan Altosaar
Dustin Tran
David M. Blei
44
116
0
27 Oct 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
63
1,091
0
16 Aug 2016
SGDR: Stochastic Gradient Descent with Warm Restarts
SGDR: Stochastic Gradient Descent with Warm Restarts
I. Loshchilov
Frank Hutter
ODL
288
8,091
0
13 Aug 2016
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
244
1,245
0
01 Sep 2015
Stochastic Expectation Propagation
Stochastic Expectation Propagation
Yingzhen Li
Jose Miguel Hernandez-Lobato
Richard Turner
122
115
0
12 Jun 2015
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRL
BDL
101
1,165
0
31 Dec 2013
The Optimal Reward Baseline for Gradient-Based Reinforcement Learning
The Optimal Reward Baseline for Gradient-Based Reinforcement Learning
Lex Weaver
Nigel Tao
117
246
0
10 Jan 2013
Expectation Propagation for approximate Bayesian inference
Expectation Propagation for approximate Bayesian inference
T. Minka
127
1,907
0
10 Jan 2013
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
230
2,619
0
29 Jun 2012
1