Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.14514
Cited By
How Powerful is Implicit Denoising in Graph Neural Networks
29 September 2022
Songtao Liu
Rex Ying
Hanze Dong
Lu Lin
Jinghui Chen
Di Wu
GNN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How Powerful is Implicit Denoising in Graph Neural Networks"
7 / 7 papers shown
Title
Joint Graph Rewiring and Feature Denoising via Spectral Resonance
Jonas Linkerhagner
Cheng Shi
Ivan Dokmanić
145
0
0
13 Aug 2024
Graph Neural Networks Inspired by Classical Iterative Algorithms
Yongyi Yang
T. Liu
Yangkun Wang
Jinjing Zhou
Quan Gan
Zhewei Wei
Zheng Zhang
Zengfeng Huang
David Wipf
56
82
0
10 Mar 2021
Simple and Deep Graph Convolutional Networks
Ming Chen
Zhewei Wei
Zengfeng Huang
Bolin Ding
Yaliang Li
GNN
95
1,473
0
04 Jul 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
254
2,701
0
02 May 2020
Certifiable Robustness and Robust Training for Graph Convolutional Networks
Daniel Zügner
Stephan Günnemann
OffRL
70
162
0
28 Jun 2019
Adversarial Attacks on Graph Neural Networks via Meta Learning
Daniel Zügner
Stephan Günnemann
OOD
AAML
GNN
123
569
0
22 Feb 2019
N-GCN: Multi-scale Graph Convolution for Semi-supervised Node Classification
Sami Abu-El-Haija
Amol Kapoor
Bryan Perozzi
Joonseok Lee
GNN
SSL
63
259
0
24 Feb 2018
1