Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.11895
Cited By
In-context Learning and Induction Heads
24 September 2022
Catherine Olsson
Nelson Elhage
Neel Nanda
Nicholas Joseph
Nova Dassarma
T. Henighan
Benjamin Mann
Amanda Askell
Yuntao Bai
Anna Chen
Tom Conerly
Dawn Drain
Deep Ganguli
Zac Hatfield-Dodds
Danny Hernandez
Scott R. Johnston
Andy Jones
John Kernion
Liane Lovitt
Kamal Ndousse
Dario Amodei
Tom B. Brown
Jack Clark
Jared Kaplan
Sam McCandlish
C. Olah
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"In-context Learning and Induction Heads"
34 / 434 papers shown
Title
Hyena Hierarchy: Towards Larger Convolutional Language Models
Michael Poli
Stefano Massaroli
Eric Q. Nguyen
Daniel Y. Fu
Tri Dao
S. Baccus
Yoshua Bengio
Stefano Ermon
Christopher Ré
VLM
174
314
0
21 Feb 2023
Simple Hardware-Efficient Long Convolutions for Sequence Modeling
Daniel Y. Fu
Elliot L. Epstein
Eric N. D. Nguyen
A. Thomas
Michael Zhang
Tri Dao
Atri Rudra
Christopher Ré
64
55
0
13 Feb 2023
A Toy Model of Universality: Reverse Engineering How Networks Learn Group Operations
Bilal Chughtai
Lawrence Chan
Neel Nanda
108
103
0
06 Feb 2023
Conditioning Predictive Models: Risks and Strategies
Evan Hubinger
Adam Jermyn
Johannes Treutlein
Rubi Hudson
Kate Woolverton
73
5
0
02 Feb 2023
Learning Functional Transduction
Mathieu Chalvidal
Thomas Serre
Rufin VanRullen
AI4CE
104
2
0
01 Feb 2023
Evaluating Neuron Interpretation Methods of NLP Models
Yimin Fan
Fahim Dalvi
Nadir Durrani
Hassan Sajjad
82
8
0
30 Jan 2023
Transformers as Algorithms: Generalization and Stability in In-context Learning
Yingcong Li
M. E. Ildiz
Dimitris Papailiopoulos
Samet Oymak
112
174
0
17 Jan 2023
Progress measures for grokking via mechanistic interpretability
Neel Nanda
Lawrence Chan
Tom Lieberum
Jess Smith
Jacob Steinhardt
100
450
0
12 Jan 2023
Tracr: Compiled Transformers as a Laboratory for Interpretability
David Lindner
János Kramár
Sebastian Farquhar
Matthew Rahtz
Tom McGrath
Vladimir Mikulik
130
75
0
12 Jan 2023
A Survey on In-context Learning
Qingxiu Dong
Lei Li
Damai Dai
Ce Zheng
Jingyuan Ma
...
Zhiyong Wu
Baobao Chang
Xu Sun
Lei Li
Zhifang Sui
ReLM
AIMat
152
546
0
31 Dec 2022
Black-box language model explanation by context length probing
Ondřej Cífka
Antoine Liutkus
MILM
LRM
124
6
0
30 Dec 2022
Hungry Hungry Hippos: Towards Language Modeling with State Space Models
Daniel Y. Fu
Tri Dao
Khaled Kamal Saab
A. Thomas
Atri Rudra
Christopher Ré
157
404
0
28 Dec 2022
Why Can GPT Learn In-Context? Language Models Implicitly Perform Gradient Descent as Meta-Optimizers
Damai Dai
Yutao Sun
Li Dong
Y. Hao
Shuming Ma
Zhifang Sui
Furu Wei
LRM
103
169
0
20 Dec 2022
Z-ICL: Zero-Shot In-Context Learning with Pseudo-Demonstrations
Xinxi Lyu
Sewon Min
Iz Beltagy
Luke Zettlemoyer
Hannaneh Hajishirzi
VLM
73
68
0
19 Dec 2022
Training Trajectories of Language Models Across Scales
Mengzhou Xia
Mikel Artetxe
Chunting Zhou
Xi Lin
Ramakanth Pasunuru
Danqi Chen
Luke Zettlemoyer
Ves Stoyanov
AIFin
LRM
98
64
0
19 Dec 2022
Rethinking the Role of Scale for In-Context Learning: An Interpretability-based Case Study at 66 Billion Scale
Hritik Bansal
Karthik Gopalakrishnan
Saket Dingliwal
S. Bodapati
Katrin Kirchhoff
Dan Roth
LRM
87
51
0
18 Dec 2022
Transformers learn in-context by gradient descent
J. Oswald
Eyvind Niklasson
E. Randazzo
João Sacramento
A. Mordvintsev
A. Zhmoginov
Max Vladymyrov
MLT
148
496
0
15 Dec 2022
Talking About Large Language Models
Murray Shanahan
AI4CE
124
275
0
07 Dec 2022
What learning algorithm is in-context learning? Investigations with linear models
Ekin Akyürek
Dale Schuurmans
Jacob Andreas
Tengyu Ma
Denny Zhou
125
493
0
28 Nov 2022
GPT-Neo for commonsense reasoning -- a theoretical and practical lens
Rohan Kashyap
Vivek Kashyap
Narendra C.P
ReLM
ELM
LRM
84
7
0
28 Nov 2022
Explainability Via Causal Self-Talk
Nicholas A. Roy
Junkyung Kim
Neil C. Rabinowitz
CML
87
7
0
17 Nov 2022
Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small
Kevin Wang
Alexandre Variengien
Arthur Conmy
Buck Shlegeris
Jacob Steinhardt
320
563
0
01 Nov 2022
Characterizing Verbatim Short-Term Memory in Neural Language Models
K. Armeni
C. Honey
Tal Linzen
KELM
RALM
85
6
0
24 Oct 2022
Language Models Understand Us, Poorly
Jared Moore
LRM
50
4
0
19 Oct 2022
The Debate Over Understanding in AI's Large Language Models
Melanie Mitchell
D. Krakauer
ELM
155
222
0
14 Oct 2022
What Can Transformers Learn In-Context? A Case Study of Simple Function Classes
Shivam Garg
Dimitris Tsipras
Percy Liang
Gregory Valiant
160
514
0
01 Aug 2022
Toward Transparent AI: A Survey on Interpreting the Inner Structures of Deep Neural Networks
Tilman Raukur
A. Ho
Stephen Casper
Dylan Hadfield-Menell
AAML
AI4CE
128
134
0
27 Jul 2022
Emergent Abilities of Large Language Models
Jason W. Wei
Yi Tay
Rishi Bommasani
Colin Raffel
Barret Zoph
...
Tatsunori Hashimoto
Oriol Vinyals
Percy Liang
J. Dean
W. Fedus
ELM
ReLM
LRM
322
2,524
0
15 Jun 2022
Scaling Laws and Interpretability of Learning from Repeated Data
Danny Hernandez
Tom B. Brown
Tom Conerly
Nova Dassarma
Dawn Drain
...
Catherine Olsson
Dario Amodei
Nicholas Joseph
Jared Kaplan
Sam McCandlish
88
118
0
21 May 2022
Towards Understanding Grokking: An Effective Theory of Representation Learning
Ziming Liu
O. Kitouni
Niklas Nolte
Eric J. Michaud
Max Tegmark
Mike Williams
AI4CE
101
154
0
20 May 2022
STaR: Bootstrapping Reasoning With Reasoning
E. Zelikman
Yuhuai Wu
Jesse Mu
Noah D. Goodman
ReLM
LRM
157
512
0
28 Mar 2022
Acquisition of Chess Knowledge in AlphaZero
Thomas McGrath
A. Kapishnikov
Nenad Tomašev
Adam Pearce
Demis Hassabis
Been Kim
Ulrich Paquet
Vladimir Kramnik
77
168
0
17 Nov 2021
Inductive Biases and Variable Creation in Self-Attention Mechanisms
Benjamin L. Edelman
Surbhi Goel
Sham Kakade
Cyril Zhang
102
125
0
19 Oct 2021
Systematic human learning and generalization from a brief tutorial with explanatory feedback
A. Nam
James L. McClelland
38
1
0
10 Jul 2021
Previous
1
2
3
4
5
6
7
8
9