ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.07679
  4. Cited By
Learning Pair Potentials using Differentiable Simulations

Learning Pair Potentials using Differentiable Simulations

16 September 2022
Wujie Wang
Zhenghao Wu
Rafael Gómez-Bombarelli
ArXivPDFHTML

Papers citing "Learning Pair Potentials using Differentiable Simulations"

5 / 5 papers shown
Title
Differentiable Modeling and Optimization of Battery Electrolyte Mixtures
  Using Geometric Deep Learning
Differentiable Modeling and Optimization of Battery Electrolyte Mixtures Using Geometric Deep Learning
Shang Zhu
Bharath Ramsundar
Emil Annevelink
Hongyi Lin
Adarsh Dave
Pin-Wen Guan
Kevin Gering
Venkat Viswanathan
10
1
0
03 Oct 2023
Accurate machine learning force fields via experimental and simulation
  data fusion
Accurate machine learning force fields via experimental and simulation data fusion
Sebastien Röcken
J. Zavadlav
AI4CE
29
12
0
17 Aug 2023
Forces are not Enough: Benchmark and Critical Evaluation for Machine
  Learning Force Fields with Molecular Simulations
Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations
Xiang Fu
Zhenghao Wu
Wujie Wang
T. Xie
S. Keten
Rafael Gómez-Bombarelli
Tommi Jaakkola
30
136
0
13 Oct 2022
Differentiable Molecular Simulations for Control and Learning
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
103
49
0
27 Feb 2020
SPNets: Differentiable Fluid Dynamics for Deep Neural Networks
SPNets: Differentiable Fluid Dynamics for Deep Neural Networks
Connor Schenck
D. Fox
PINN
3DPC
AI4CE
172
161
0
15 Jun 2018
1