ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.07088
  4. Cited By
Self-distilled Feature Aggregation for Self-supervised Monocular Depth
  Estimation

Self-distilled Feature Aggregation for Self-supervised Monocular Depth Estimation

15 September 2022
Zhengming Zhou
Qiulei Dong
    MDE
ArXivPDFHTML

Papers citing "Self-distilled Feature Aggregation for Self-supervised Monocular Depth Estimation"

25 / 25 papers shown
Title
Shallow Features Guide Unsupervised Domain Adaptation for Semantic
  Segmentation at Class Boundaries
Shallow Features Guide Unsupervised Domain Adaptation for Semantic Segmentation at Class Boundaries
Adriano Cardace
Pierluigi Zama Ramirez
Samuele Salti
Luigi Di Stefano
OOD
87
17
0
06 Oct 2021
Fine-grained Semantics-aware Representation Enhancement for
  Self-supervised Monocular Depth Estimation
Fine-grained Semantics-aware Representation Enhancement for Self-supervised Monocular Depth Estimation
Hyun-Joo Jung
Eunhyeok Park
S. Yoo
MDE
58
110
0
19 Aug 2021
Self-supervised Monocular Depth Estimation for All Day Images using
  Domain Separation
Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation
Lina Liu
Xibin Song
Mengmeng Wang
Yong Liu
Liangjun Zhang
MDE
50
68
0
17 Aug 2021
FaPN: Feature-aligned Pyramid Network for Dense Image Prediction
FaPN: Feature-aligned Pyramid Network for Dense Image Prediction
Shihua Huang
Zhichao Lu
Ran Cheng
Cheng He
40
207
0
16 Aug 2021
Single Image Depth Prediction with Wavelet Decomposition
Single Image Depth Prediction with Wavelet Decomposition
Michael Ramamonjisoa
Michael Firman
Jamie Watson
Vincent Lepetit
Daniyar Turmukhambetov
MDE
73
55
0
03 Jun 2021
Vision Transformers for Dense Prediction
Vision Transformers for Dense Prediction
René Ranftl
Alexey Bochkovskiy
V. Koltun
ViT
MDE
133
1,734
0
24 Mar 2021
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction
  without Convolutions
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
Wenhai Wang
Enze Xie
Xiang Li
Deng-Ping Fan
Kaitao Song
Ding Liang
Tong Lu
Ping Luo
Ling Shao
ViT
527
3,722
0
24 Feb 2021
Forget About the LiDAR: Self-Supervised Depth Estimators with MED
  Probability Volumes
Forget About the LiDAR: Self-Supervised Depth Estimators with MED Probability Volumes
Juan Luis Gonzalez
Munchurl Kim
178
87
0
09 Aug 2020
Feature-metric Loss for Self-supervised Learning of Depth and Egomotion
Feature-metric Loss for Self-supervised Learning of Depth and Egomotion
Chang Shu
Kun Yu
Zhixiang Duan
Kuiyuan Yang
SSL
MDE
74
234
0
21 Jul 2020
Self-Supervised Monocular Depth Estimation: Solving the Dynamic Object
  Problem by Semantic Guidance
Self-Supervised Monocular Depth Estimation: Solving the Dynamic Object Problem by Semantic Guidance
Marvin Klingner
Jan-Aike Termöhlen
Jonas Mikolajczyk
Tim Fingscheidt
MDE
113
321
0
14 Jul 2020
The Edge of Depth: Explicit Constraints between Segmentation and Depth
The Edge of Depth: Explicit Constraints between Segmentation and Depth
Shengjie Zhu
Garrick Brazil
Xiaoming Liu
MDE
58
105
0
01 Apr 2020
Self-supervised Monocular Trained Depth Estimation using Self-attention
  and Discrete Disparity Volume
Self-supervised Monocular Trained Depth Estimation using Self-attention and Discrete Disparity Volume
A. Johnston
G. Carneiro
MDE
58
234
0
31 Mar 2020
AlignSeg: Feature-Aligned Segmentation Networks
AlignSeg: Feature-Aligned Segmentation Networks
Zilong Huang
Yunchao Wei
Xinggang Wang
Wenyu Liu
Thomas S. Huang
Humphrey Shi
SSeg
170
149
0
24 Feb 2020
Semantic Flow for Fast and Accurate Scene Parsing
Semantic Flow for Fast and Accurate Scene Parsing
Xiangtai Li
Ansheng You
Zhen Zhu
Houlong Zhao
Maoke Yang
Kuiyuan Yang
Yunhai Tong
SSeg
83
358
0
24 Feb 2020
Self-supervised Learning with Geometric Constraints in Monocular Video:
  Connecting Flow, Depth, and Camera
Self-supervised Learning with Geometric Constraints in Monocular Video: Connecting Flow, Depth, and Camera
Yuhua Chen
Cordelia Schmid
C. Sminchisescu
SSL
MDE
67
246
0
12 Jul 2019
3D Packing for Self-Supervised Monocular Depth Estimation
3D Packing for Self-Supervised Monocular Depth Estimation
Vitor Campagnolo Guizilini
Rares Andrei Ambrus
Sudeep Pillai
Allan Raventos
Adrien Gaidon
SSL
3DPC
MDE
79
647
0
06 May 2019
Learning monocular depth estimation infusing traditional stereo
  knowledge
Learning monocular depth estimation infusing traditional stereo knowledge
Fabio Tosi
Filippo Aleotti
Matteo Poggi
S. Mattoccia
MDE
52
218
0
08 Apr 2019
Learning Monocular Depth by Distilling Cross-domain Stereo Networks
Learning Monocular Depth by Distilling Cross-domain Stereo Networks
Xiaoyang Guo
Hongsheng Li
Shuai Yi
Jimmy S. J. Ren
Xiaogang Wang
MDE
68
207
0
20 Aug 2018
GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera
  Pose
GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose
Zhichao Yin
Jianping Shi
MDE
43
1,143
0
06 Mar 2018
Sparsity Invariant CNNs
Sparsity Invariant CNNs
J. Uhrig
N. Schneider
Lukas Schneider
Uwe Franke
Thomas Brox
Andreas Geiger
130
826
0
22 Aug 2017
The Cityscapes Dataset for Semantic Urban Scene Understanding
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
1.1K
11,623
0
06 Apr 2016
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Justin Johnson
Alexandre Alahi
Li Fei-Fei
SupR
234
10,249
0
27 Mar 2016
Fast and Accurate Deep Network Learning by Exponential Linear Units
  (ELUs)
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
300
5,524
0
23 Nov 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
463
43,305
0
11 Feb 2015
Depth Map Prediction from a Single Image using a Multi-Scale Deep
  Network
Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
David Eigen
Christian Puhrsch
Rob Fergus
MDE
3DPC
3DV
233
4,056
0
09 Jun 2014
1