ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.02535
  4. Cited By
Analyzing Transformers in Embedding Space

Analyzing Transformers in Embedding Space

6 September 2022
Guy Dar
Mor Geva
Ankit Gupta
Jonathan Berant
ArXivPDFHTML

Papers citing "Analyzing Transformers in Embedding Space"

16 / 16 papers shown
Title
Bigram Subnetworks: Mapping to Next Tokens in Transformer Language Models
Bigram Subnetworks: Mapping to Next Tokens in Transformer Language Models
Tyler A. Chang
Benjamin Bergen
50
0
0
21 Apr 2025
The Representation and Recall of Interwoven Structured Knowledge in LLMs: A Geometric and Layered Analysis
The Representation and Recall of Interwoven Structured Knowledge in LLMs: A Geometric and Layered Analysis
Ge Lei
Samuel J. Cooper
KELM
49
0
0
15 Feb 2025
Understanding Multimodal LLMs: the Mechanistic Interpretability of Llava in Visual Question Answering
Zeping Yu
Sophia Ananiadou
136
0
0
17 Nov 2024
From Tokens to Words: On the Inner Lexicon of LLMs
From Tokens to Words: On the Inner Lexicon of LLMs
Guy Kaplan
Matanel Oren
Yuval Reif
Roy Schwartz
48
12
0
08 Oct 2024
A Practical Review of Mechanistic Interpretability for Transformer-Based Language Models
A Practical Review of Mechanistic Interpretability for Transformer-Based Language Models
Daking Rai
Yilun Zhou
Shi Feng
Abulhair Saparov
Ziyu Yao
82
19
0
02 Jul 2024
REVS: Unlearning Sensitive Information in Language Models via Rank Editing in the Vocabulary Space
REVS: Unlearning Sensitive Information in Language Models via Rank Editing in the Vocabulary Space
Tomer Ashuach
Martin Tutek
Yonatan Belinkov
KELM
MU
71
4
0
13 Jun 2024
Dissecting Query-Key Interaction in Vision Transformers
Dissecting Query-Key Interaction in Vision Transformers
Xu Pan
Aaron Philip
Ziqian Xie
Odelia Schwartz
39
1
0
04 Apr 2024
Patchscopes: A Unifying Framework for Inspecting Hidden Representations
  of Language Models
Patchscopes: A Unifying Framework for Inspecting Hidden Representations of Language Models
Asma Ghandeharioun
Avi Caciularu
Adam Pearce
Lucas Dixon
Mor Geva
34
87
0
11 Jan 2024
Why bother with geometry? On the relevance of linear decompositions of
  Transformer embeddings
Why bother with geometry? On the relevance of linear decompositions of Transformer embeddings
Timothee Mickus
Raúl Vázquez
25
2
0
10 Oct 2023
DecoderLens: Layerwise Interpretation of Encoder-Decoder Transformers
DecoderLens: Layerwise Interpretation of Encoder-Decoder Transformers
Anna Langedijk
Hosein Mohebbi
Gabriele Sarti
Willem H. Zuidema
Jaap Jumelet
32
10
0
05 Oct 2023
Towards Best Practices of Activation Patching in Language Models:
  Metrics and Methods
Towards Best Practices of Activation Patching in Language Models: Metrics and Methods
Fred Zhang
Neel Nanda
LLMSV
36
97
0
27 Sep 2023
Explaining How Transformers Use Context to Build Predictions
Explaining How Transformers Use Context to Build Predictions
Javier Ferrando
Gerard I. Gállego
Ioannis Tsiamas
Marta R. Costa-jussá
32
31
0
21 May 2023
Eliciting Latent Predictions from Transformers with the Tuned Lens
Eliciting Latent Predictions from Transformers with the Tuned Lens
Nora Belrose
Zach Furman
Logan Smith
Danny Halawi
Igor V. Ostrovsky
Lev McKinney
Stella Biderman
Jacob Steinhardt
22
193
0
14 Mar 2023
Interpretability in the Wild: a Circuit for Indirect Object
  Identification in GPT-2 small
Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small
Kevin Wang
Alexandre Variengien
Arthur Conmy
Buck Shlegeris
Jacob Steinhardt
212
496
0
01 Nov 2022
Mass-Editing Memory in a Transformer
Mass-Editing Memory in a Transformer
Kevin Meng
Arnab Sen Sharma
A. Andonian
Yonatan Belinkov
David Bau
KELM
VLM
35
525
0
13 Oct 2022
The Bottom-up Evolution of Representations in the Transformer: A Study
  with Machine Translation and Language Modeling Objectives
The Bottom-up Evolution of Representations in the Transformer: A Study with Machine Translation and Language Modeling Objectives
Elena Voita
Rico Sennrich
Ivan Titov
198
181
0
03 Sep 2019
1