ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.06977
20
2

Why bother with geometry? On the relevance of linear decompositions of Transformer embeddings

10 October 2023
Timothee Mickus
Raúl Vázquez
ArXivPDFHTML
Abstract

A recent body of work has demonstrated that Transformer embeddings can be linearly decomposed into well-defined sums of factors, that can in turn be related to specific network inputs or components. There is however still a dearth of work studying whether these mathematical reformulations are empirically meaningful. In the present work, we study representations from machine-translation decoders using two of such embedding decomposition methods. Our results indicate that, while decomposition-derived indicators effectively correlate with model performance, variation across different runs suggests a more nuanced take on this question. The high variability of our measurements indicate that geometry reflects model-specific characteristics more than it does sentence-specific computations, and that similar training conditions do not guarantee similar vector spaces.

View on arXiv
Comments on this paper