Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.02525
Cited By
v1
v2
v3
v4 (latest)
Generalisation under gradient descent via deterministic PAC-Bayes
6 September 2022
Eugenio Clerico
Tyler Farghly
George Deligiannidis
Benjamin Guedj
Arnaud Doucet
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Generalisation under gradient descent via deterministic PAC-Bayes"
50 / 57 papers shown
Title
Non-vacuous Generalization Bounds for Deep Neural Networks without any modification to the trained models
Khoat Than
Dat Phan
BDL
AAML
VLM
91
0
0
10 Mar 2025
Understanding the Generalization Error of Markov algorithms through Poissonization
Benjamin Dupuis
Maxime Haddouche
George Deligiannidis
Umut Simsekli
86
0
0
11 Feb 2025
A note on regularised NTK dynamics with an application to PAC-Bayesian training
Eugenio Clerico
Benjamin Guedj
84
0
0
20 Dec 2023
Algorithmic Stability of Heavy-Tailed SGD with General Loss Functions
Anant Raj
Lingjiong Zhu
Mert Gurbuzbalaban
Umut Simsekli
55
16
0
27 Jan 2023
Chained Generalisation Bounds
Eugenio Clerico
Amitis Shidani
George Deligiannidis
Arnaud Doucet
AI4CE
FedML
71
13
0
02 Mar 2022
Generalization Bounds via Convex Analysis
Gábor Lugosi
Gergely Neu
55
29
0
10 Feb 2022
Non-Vacuous Generalisation Bounds for Shallow Neural Networks
Felix Biggs
Benjamin Guedj
BDL
82
26
0
03 Feb 2022
Time-independent Generalization Bounds for SGLD in Non-convex Settings
Tyler Farghly
Patrick Rebeschini
73
24
0
25 Nov 2021
Conditionally Gaussian PAC-Bayes
Eugenio Clerico
George Deligiannidis
Arnaud Doucet
88
10
0
22 Oct 2021
User-friendly introduction to PAC-Bayes bounds
Pierre Alquier
FedML
154
204
0
21 Oct 2021
Learning PAC-Bayes Priors for Probabilistic Neural Networks
Maria Perez-Ortiz
Omar Rivasplata
Benjamin Guedj
M. Gleeson
Jingyu Zhang
John Shawe-Taylor
M. Bober
J. Kittler
UQCV
96
31
0
21 Sep 2021
On Margins and Derandomisation in PAC-Bayes
Felix Biggs
Benjamin Guedj
64
20
0
08 Jul 2021
Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound
Valentina Zantedeschi
Paul Viallard
Emilie Morvant
Rémi Emonet
Amaury Habrard
Pascal Germain
Benjamin Guedj
FedML
BDL
57
17
0
23 Jun 2021
Label Noise SGD Provably Prefers Flat Global Minimizers
Alexandru Damian
Tengyu Ma
Jason D. Lee
NoLa
99
119
0
11 Jun 2021
Tensor Programs IIb: Architectural Universality of Neural Tangent Kernel Training Dynamics
Greg Yang
Etai Littwin
70
66
0
08 May 2021
Information-Theoretic Generalization Bounds for Stochastic Gradient Descent
Gergely Neu
Gintare Karolina Dziugaite
Mahdi Haghifam
Daniel M. Roy
68
90
0
01 Feb 2021
A Deeper Look at the Hessian Eigenspectrum of Deep Neural Networks and its Applications to Regularization
Adepu Ravi Sankar
Yash Khasbage
Rahul Vigneswaran
V. Balasubramanian
74
44
0
07 Dec 2020
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
341
6,480
0
26 Nov 2020
Tighter risk certificates for neural networks
Maria Perez-Ortiz
Omar Rivasplata
John Shawe-Taylor
Csaba Szepesvári
UQCV
78
106
0
25 Jul 2020
PAC-Bayes Analysis Beyond the Usual Bounds
Omar Rivasplata
Ilja Kuzborskij
Csaba Szepesvári
John Shawe-Taylor
81
80
0
23 Jun 2020
Differentiable PAC-Bayes Objectives with Partially Aggregated Neural Networks
Felix Biggs
Benjamin Guedj
FedML
UQCV
BDL
28
34
0
22 Jun 2020
De-randomized PAC-Bayes Margin Bounds: Applications to Non-convex and Non-smooth Predictors
A. Banerjee
Tiancong Chen
Yingxue Zhou
BDL
46
8
0
23 Feb 2020
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates
Jeffrey Negrea
Mahdi Haghifam
Gintare Karolina Dziugaite
Ashish Khisti
Daniel M. Roy
FedML
157
153
0
06 Nov 2019
Sharper bounds for uniformly stable algorithms
Olivier Bousquet
Yegor Klochkov
Nikita Zhivotovskiy
59
122
0
17 Oct 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
86
635
0
14 Aug 2019
PAC-Bayesian Transportation Bound
Kohei Miyaguchi
40
5
0
31 May 2019
Deterministic PAC-Bayesian generalization bounds for deep networks via generalizing noise-resilience
Vaishnavh Nagarajan
J. Zico Kolter
87
100
0
30 May 2019
Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks
Gaël Letarte
Pascal Germain
Benjamin Guedj
Franccois Laviolette
MQ
AI4CE
UQCV
70
54
0
24 May 2019
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
57
243
0
27 Apr 2019
Implicit regularization for deep neural networks driven by an Ornstein-Uhlenbeck like process
Guy Blanc
Neha Gupta
Gregory Valiant
Paul Valiant
138
146
0
19 Apr 2019
Conformal Symplectic and Relativistic Optimization
G. Francca
Jeremias Sulam
Daniel P. Robinson
René Vidal
44
69
0
11 Mar 2019
High probability generalization bounds for uniformly stable algorithms with nearly optimal rate
Vitaly Feldman
J. Vondrák
70
155
0
27 Feb 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
211
1,104
0
18 Feb 2019
Asymmetric Valleys: Beyond Sharp and Flat Local Minima
Haowei He
Gao Huang
Yang Yuan
ODL
MLT
69
150
0
02 Feb 2019
An Investigation into Neural Net Optimization via Hessian Eigenvalue Density
Behrooz Ghorbani
Shankar Krishnan
Ying Xiao
ODL
67
324
0
29 Jan 2019
A Primer on PAC-Bayesian Learning
Benjamin Guedj
156
222
0
16 Jan 2019
Generalization Bounds for Uniformly Stable Algorithms
Vitaly Feldman
J. Vondrák
49
89
0
24 Dec 2018
Global Non-convex Optimization with Discretized Diffusions
Murat A. Erdogdu
Lester W. Mackey
Ohad Shamir
69
105
0
29 Oct 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
267
3,203
0
20 Jun 2018
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
417
5,111
0
19 Jun 2018
Non-Vacuous Generalization Bounds at the ImageNet Scale: A PAC-Bayesian Compression Approach
Wenda Zhou
Victor Veitch
Morgane Austern
Ryan P. Adams
Peter Orbanz
75
213
0
16 Apr 2018
Averaging Weights Leads to Wider Optima and Better Generalization
Pavel Izmailov
Dmitrii Podoprikhin
T. Garipov
Dmitry Vetrov
A. Wilson
FedML
MoMe
133
1,662
0
14 Mar 2018
Generalization Error Bounds for Noisy, Iterative Algorithms
Ankit Pensia
Varun Jog
Po-Ling Loh
74
113
0
12 Jan 2018
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks
Behnam Neyshabur
Srinadh Bhojanapalli
Nathan Srebro
83
609
0
29 Jul 2017
Generalization Bounds of SGLD for Non-convex Learning: Two Theoretical Viewpoints
Wenlong Mou
Liwei Wang
Xiyu Zhai
Kai Zheng
MLT
52
158
0
19 Jul 2017
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
205
1,220
0
26 Jun 2017
Empirical Analysis of the Hessian of Over-Parametrized Neural Networks
Levent Sagun
Utku Evci
V. U. Güney
Yann N. Dauphin
Léon Bottou
54
418
0
14 Jun 2017
Information-theoretic analysis of generalization capability of learning algorithms
Aolin Xu
Maxim Raginsky
169
446
0
22 May 2017
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
Gintare Karolina Dziugaite
Daniel M. Roy
106
815
0
31 Mar 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
73
521
0
13 Feb 2017
1
2
Next