ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.01948
  4. Cited By
A smooth basis for atomistic machine learning

A smooth basis for atomistic machine learning

5 September 2022
Filippo Bigi
Kevin K. Huguenin-Dumittan
Michele Ceriotti
D. Manolopoulos
ArXivPDFHTML

Papers citing "A smooth basis for atomistic machine learning"

6 / 6 papers shown
Title
Cartesian atomic cluster expansion for machine learning interatomic
  potentials
Cartesian atomic cluster expansion for machine learning interatomic potentials
Bingqing Cheng
42
30
0
12 Feb 2024
Smooth, exact rotational symmetrization for deep learning on point
  clouds
Smooth, exact rotational symmetrization for deep learning on point clouds
Sergey Pozdnyakov
Michele Ceriotti
3DPC
37
25
0
30 May 2023
Wigner kernels: body-ordered equivariant machine learning without a
  basis
Wigner kernels: body-ordered equivariant machine learning without a basis
Filippo Bigi
Sergey Pozdnyakov
Michele Ceriotti
32
15
0
07 Mar 2023
Completeness of Atomic Structure Representations
Completeness of Atomic Structure Representations
M. J. Willatt
Sergey Pozdnyakov
Christoph Ortner
Michele Ceriotti
20
12
0
28 Feb 2023
The Design Space of E(3)-Equivariant Atom-Centered Interatomic
  Potentials
The Design Space of E(3)-Equivariant Atom-Centered Interatomic Potentials
Ilyes Batatia
Simon L. Batzner
D. P. Kovács
Albert Musaelian
G. Simm
R. Drautz
Christoph Ortner
Boris Kozinsky
Gábor Csányi
32
133
0
13 May 2022
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
215
1,240
0
08 Jan 2021
1