ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.13780
  4. Cited By
Autoinverse: Uncertainty Aware Inversion of Neural Networks

Autoinverse: Uncertainty Aware Inversion of Neural Networks

29 August 2022
Navid Ansari
Hans-Peter Seidel
Nima Vahidi Ferdowsi
Vahid Babaei
    BDL
ArXivPDFHTML

Papers citing "Autoinverse: Uncertainty Aware Inversion of Neural Networks"

13 / 13 papers shown
Title
Network Inversion for Generating Confidently Classified Counterfeits
Network Inversion for Generating Confidently Classified Counterfeits
Pirzada Suhail
Amit Sethi
59
0
0
26 Mar 2025
Uncertainty separation via ensemble quantile regression
Uncertainty separation via ensemble quantile regression
Navid Ansari
Hans-Peter Seidel
Vahid Babaei
UD
UQCV
74
0
0
18 Dec 2024
Network Inversion and Its Applications
Network Inversion and Its Applications
Pirzada Suhail
Hao Tang
Amit Sethi
AAML
65
0
0
26 Nov 2024
Network Inversion for Training-Like Data Reconstruction
Network Inversion for Training-Like Data Reconstruction
Pirzada Suhail
Amit Sethi
FedML
24
0
0
22 Oct 2024
Network Inversion of Convolutional Neural Nets
Network Inversion of Convolutional Neural Nets
Pirzada Suhail
Amit Sethi
40
1
0
25 Jul 2024
TrustMol: Trustworthy Inverse Molecular Design via Alignment with
  Molecular Dynamics
TrustMol: Trustworthy Inverse Molecular Design via Alignment with Molecular Dynamics
Kevin Tirta Wijaya
Navid Ansari
Hans-Peter Seidel
Vahid Babaei
27
0
0
26 Feb 2024
Compositional Generative Inverse Design
Compositional Generative Inverse Design
Tailin Wu
Takashi Maruyama
Long Wei
Tao Zhang
Yilun Du
Gianluca Iaccarino
J. Leskovec
DiffM
AI4CE
26
6
0
24 Jan 2024
Zero Grads: Learning Local Surrogate Losses for Non-Differentiable
  Graphics
Zero Grads: Learning Local Surrogate Losses for Non-Differentiable Graphics
Michael Fischer
Tobias Ritschel
27
2
0
10 Aug 2023
Large-Batch, Iteration-Efficient Neural Bayesian Design Optimization
Large-Batch, Iteration-Efficient Neural Bayesian Design Optimization
Navid Ansari
Hans-Peter Seidel
Vahid Babaei
19
2
0
01 Jun 2023
UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical
  Satellite Time Series
UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical Satellite Time Series
Patrick Ebel
Vivien Sainte Fare Garnot
M. Schmitt
Jan Dirk Wegner
Xiao Xiang Zhu
20
32
0
11 Apr 2023
Mixed Integer Neural Inverse Design
Mixed Integer Neural Inverse Design
Navid Ansari
Hans-Peter Seidel
Vahid Babaei
16
5
0
27 Sep 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1