ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.13125
  4. Cited By
Normality-Guided Distributional Reinforcement Learning for Continuous
  Control

Normality-Guided Distributional Reinforcement Learning for Continuous Control

28 August 2022
Ju-Seung Byun
Andrew Perrault
    OffRL
ArXivPDFHTML

Papers citing "Normality-Guided Distributional Reinforcement Learning for Continuous Control"

32 / 32 papers shown
Title
Sample Efficient Deep Reinforcement Learning via Uncertainty Estimation
Sample Efficient Deep Reinforcement Learning via Uncertainty Estimation
Vincent Mai
Kaustubh Mani
Liam Paull
61
35
0
05 Jan 2022
Implicit Distributional Reinforcement Learning
Implicit Distributional Reinforcement Learning
Yuguang Yue
Zhendong Wang
Mingyuan Zhou
OffRL
45
16
0
13 Jul 2020
SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
  Reinforcement Learning
SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep Reinforcement Learning
Kimin Lee
Michael Laskin
A. Srinivas
Pieter Abbeel
OffRL
44
201
0
09 Jul 2020
Sample-based Distributional Policy Gradient
Sample-based Distributional Policy Gradient
Rahul Singh
Keuntaek Lee
Yongxin Chen
41
19
0
08 Jan 2020
Regularization Matters in Policy Optimization
Regularization Matters in Policy Optimization
Zhuang Liu
Xuanlin Li
Bingyi Kang
Trevor Darrell
OffRL
50
33
0
21 Oct 2019
Estimating Risk and Uncertainty in Deep Reinforcement Learning
Estimating Risk and Uncertainty in Deep Reinforcement Learning
W. Clements
B. V. Delft
Benoît-Marie Robaglia
Reda Bahi Slaoui
Sébastien Toth
49
96
0
23 May 2019
Distributional Reinforcement Learning for Efficient Exploration
Distributional Reinforcement Learning for Efficient Exploration
B. Mavrin
Shangtong Zhang
Hengshuai Yao
Linglong Kong
Kaiwen Wu
Yaoliang Yu
OOD
OffRL
41
87
0
13 May 2019
Understanding the impact of entropy on policy optimization
Understanding the impact of entropy on policy optimization
Zafarali Ahmed
Nicolas Le Roux
Mohammad Norouzi
Dale Schuurmans
73
230
0
27 Nov 2018
Exploration by Random Network Distillation
Exploration by Random Network Distillation
Yuri Burda
Harrison Edwards
Amos Storkey
Oleg Klimov
109
1,310
0
30 Oct 2018
Distributed Distributional Deterministic Policy Gradients
Distributed Distributional Deterministic Policy Gradients
Gabriel Barth-Maron
Matthew W. Hoffman
David Budden
Will Dabney
Dan Horgan
TB Dhruva
Alistair Muldal
N. Heess
Timothy Lillicrap
OffRL
82
479
0
23 Apr 2018
Addressing Function Approximation Error in Actor-Critic Methods
Addressing Function Approximation Error in Actor-Critic Methods
Scott Fujimoto
H. V. Hoof
David Meger
OffRL
164
5,121
0
26 Feb 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
241
8,236
0
04 Jan 2018
Efficient exploration with Double Uncertain Value Networks
Efficient exploration with Double Uncertain Value Networks
Thomas M. Moerland
Joost Broekens
Catholijn M. Jonker
40
42
0
29 Nov 2017
Distributional Reinforcement Learning with Quantile Regression
Distributional Reinforcement Learning with Quantile Regression
Will Dabney
Mark Rowland
Marc G. Bellemare
Rémi Munos
87
756
0
27 Oct 2017
A Distributional Perspective on Reinforcement Learning
A Distributional Perspective on Reinforcement Learning
Marc G. Bellemare
Will Dabney
Rémi Munos
OffRL
82
1,497
0
21 Jul 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
285
18,685
0
20 Jul 2017
The Cramer Distance as a Solution to Biased Wasserstein Gradients
The Cramer Distance as a Solution to Biased Wasserstein Gradients
Marc G. Bellemare
Ivo Danihelka
Will Dabney
S. Mohamed
Balaji Lakshminarayanan
Stephan Hoyer
Rémi Munos
GAN
53
344
0
30 May 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
312
4,667
0
15 Mar 2017
EX2: Exploration with Exemplar Models for Deep Reinforcement Learning
EX2: Exploration with Exemplar Models for Deep Reinforcement Learning
Justin Fu
John D. Co-Reyes
Sergey Levine
OffRL
52
155
0
03 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
555
5,748
0
05 Dec 2016
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement
  Learning
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
Haoran Tang
Rein Houthooft
Davis Foote
Adam Stooke
Xi Chen
Yan Duan
John Schulman
F. Turck
Pieter Abbeel
OffRL
86
764
0
15 Nov 2016
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic
S. Gu
Timothy Lillicrap
Zoubin Ghahramani
Richard Turner
Sergey Levine
OffRL
BDL
76
344
0
07 Nov 2016
Unifying Count-Based Exploration and Intrinsic Motivation
Unifying Count-Based Exploration and Intrinsic Motivation
Marc G. Bellemare
S. Srinivasan
Georg Ostrovski
Tom Schaul
D. Saxton
Rémi Munos
167
1,465
0
06 Jun 2016
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
188
5,056
0
05 Jun 2016
VIME: Variational Information Maximizing Exploration
VIME: Variational Information Maximizing Exploration
Rein Houthooft
Xi Chen
Yan Duan
John Schulman
F. Turck
Pieter Abbeel
55
78
0
31 May 2016
Deep Exploration via Bootstrapped DQN
Deep Exploration via Bootstrapped DQN
Ian Osband
Charles Blundell
Alexander Pritzel
Benjamin Van Roy
78
1,302
0
15 Feb 2016
Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
170
8,805
0
04 Feb 2016
High-Dimensional Continuous Control Using Generalized Advantage
  Estimation
High-Dimensional Continuous Control Using Generalized Advantage Estimation
John Schulman
Philipp Moritz
Sergey Levine
Michael I. Jordan
Pieter Abbeel
OffRL
60
3,368
0
08 Jun 2015
Trust Region Policy Optimization
Trust Region Policy Optimization
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
254
6,722
0
19 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.1K
149,474
0
22 Dec 2014
Sparse Quantile Huber Regression for Efficient and Robust Estimation
Sparse Quantile Huber Regression for Efficient and Robust Estimation
Aleksandr Aravkin
Anju Kambadur
A. Lozano
Ronny Luss
48
17
0
19 Feb 2014
The Arcade Learning Environment: An Evaluation Platform for General
  Agents
The Arcade Learning Environment: An Evaluation Platform for General Agents
Marc G. Bellemare
Yavar Naddaf
J. Veness
Michael Bowling
92
2,992
0
19 Jul 2012
1