ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.08437
  4. Cited By
Multi-View Correlation Consistency for Semi-Supervised Semantic
  Segmentation

Multi-View Correlation Consistency for Semi-Supervised Semantic Segmentation

17 August 2022
Yunzhong Hou
Stephen Gould
Liang Zheng
ArXiv (abs)PDFHTML

Papers citing "Multi-View Correlation Consistency for Semi-Supervised Semantic Segmentation"

44 / 44 papers shown
Title
Semi-supervised Semantic Segmentation with Error Localization Network
Semi-supervised Semantic Segmentation with Error Localization Network
Donghyeon Kwon
Suha Kwak
62
93
0
05 Apr 2022
Unbiased Subclass Regularization for Semi-Supervised Semantic
  Segmentation
Unbiased Subclass Regularization for Semi-Supervised Semantic Segmentation
Dayan Guan
Jiaxing Huang
Aoran Xiao
Shijian Lu
67
43
0
18 Mar 2022
Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels
Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels
Yuchao Wang
Haochen Wang
Yujun Shen
Jingjing Fei
Wei Li
Guoqiang Jin
Liwei Wu
Rui Zhao
Xinyi Le
UQCV
62
344
0
08 Mar 2022
Perturbed and Strict Mean Teachers for Semi-supervised Semantic
  Segmentation
Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation
Yuyuan Liu
Yu Tian
Yuanhong Chen
Fengbei Liu
Vasileios Belagiannis
G. Carneiro
76
188
0
25 Nov 2021
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning
Hanzhe Hu
Fangyun Wei
Han Hu
Qiwei Ye
J. Cui
Liwei Wang
65
161
0
11 Oct 2021
Pixel Contrastive-Consistent Semi-Supervised Semantic Segmentation
Pixel Contrastive-Consistent Semi-Supervised Semantic Segmentation
Yuanyi Zhong
Bodi Yuan
Hong Wu
Zhiqiang Yuan
Jian Peng
Yu-Xiong Wang
82
172
0
20 Aug 2021
Re-distributing Biased Pseudo Labels for Semi-supervised Semantic
  Segmentation: A Baseline Investigation
Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation
Ruifei He
Jihan Yang
Xiaojuan Qi
82
119
0
23 Jul 2021
Semi-supervised Semantic Segmentation with Directional Context-aware
  Consistency
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency
Xin Lai
Zhuotao Tian
Li Jiang
Shu Liu
Hengshuang Zhao
Liwei Wang
Jiaya Jia
98
213
0
27 Jun 2021
ST++: Make Self-training Work Better for Semi-supervised Semantic
  Segmentation
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation
Lihe Yang
Wei Zhuo
Lei Qi
Yinghuan Shi
Yang Gao
52
313
0
09 Jun 2021
Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
Xiaokang Chen
Yuhui Yuan
Gang Zeng
Jingdong Wang
91
785
0
02 Jun 2021
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive
  Learning from a Class-wise Memory Bank
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank
Inigo Alonso
Alberto Sabater
David Ferstl
Luis Montesano
Ana C. Murillo
SSLCLL
165
210
0
27 Apr 2021
A Simple Baseline for Semi-supervised Semantic Segmentation with Strong
  Data Augmentation
A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation
Jianlong Yuan
Yifan Liu
Chunhua Shen
Zhibin Wang
Hao Li
45
112
0
15 Apr 2021
Bootstrapping Semantic Segmentation with Regional Contrast
Bootstrapping Semantic Segmentation with Regional Contrast
Shikun Liu
Shuaifeng Zhi
Edward Johns
Andrew J. Davison
ISeg
60
124
0
09 Apr 2021
Exploring Cross-Image Pixel Contrast for Semantic Segmentation
Exploring Cross-Image Pixel Contrast for Semantic Segmentation
Wenguan Wang
Tianfei Zhou
Feng Yu
Jifeng Dai
E. Konukoglu
Luc Van Gool
194
481
0
28 Jan 2021
Simple Copy-Paste is a Strong Data Augmentation Method for Instance
  Segmentation
Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation
Golnaz Ghiasi
Huayu Chen
A. Srinivas
Rui Qian
Nayeon Lee
E. D. Cubuk
Quoc V. Le
Barret Zoph
ISeg
299
991
0
13 Dec 2020
Contrastive Learning for Label-Efficient Semantic Segmentation
Contrastive Learning for Label-Efficient Semantic Segmentation
Xiangyu Zhao
Raviteja Vemulapalli
Philip Mansfield
Boqing Gong
Bradley Green
Lior Shapira
Ying Nian Wu
SSLSSeg
115
176
0
13 Dec 2020
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised
  Visual Representation Learning
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning
Zhenda Xie
Yutong Lin
Zheng Zhang
Yue Cao
Stephen Lin
Han Hu
SSL
109
414
0
19 Nov 2020
Dense Contrastive Learning for Self-Supervised Visual Pre-Training
Dense Contrastive Learning for Self-Supervised Visual Pre-Training
Xinlong Wang
Rufeng Zhang
Chunhua Shen
Tao Kong
Lei Li
SSL
77
686
0
18 Nov 2020
Feature Binding with Category-Dependant MixUp for Semantic Segmentation
  and Adversarial Robustness
Feature Binding with Category-Dependant MixUp for Semantic Segmentation and Adversarial Robustness
Md. Amirul Islam
M. Kowal
Konstantinos G. Derpanis
Neil D. B. Bruce
38
7
0
13 Aug 2020
Guided Collaborative Training for Pixel-wise Semi-Supervised Learning
Guided Collaborative Training for Pixel-wise Semi-Supervised Learning
Zhanghan Ke
Di Qiu
Kaican Li
Qiong Yan
Rynson W. H. Lau
57
252
0
12 Aug 2020
ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised
  Learning
ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning
Viktor Olsson
Wilhelm Tranheden
Juliano Pinto
Lennart Svensson
68
340
0
15 Jul 2020
Unsupervised Learning of Visual Features by Contrasting Cluster
  Assignments
Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
Mathilde Caron
Ishan Misra
Julien Mairal
Priya Goyal
Piotr Bojanowski
Armand Joulin
OCLSSL
246
4,083
0
17 Jun 2020
Semi-Supervised Semantic Segmentation with Cross-Consistency Training
Semi-Supervised Semantic Segmentation with Cross-Consistency Training
Yassine Ouali
C´eline Hudelot
Myriam Tami
121
727
0
19 Mar 2020
Does label smoothing mitigate label noise?
Does label smoothing mitigate label noise?
Michal Lukasik
Srinadh Bhojanapalli
A. Menon
Surinder Kumar
NoLa
184
351
0
05 Mar 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
372
18,778
0
13 Feb 2020
FixMatch: Simplifying Semi-Supervised Learning with Consistency and
  Confidence
FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
Kihyuk Sohn
David Berthelot
Chun-Liang Li
Zizhao Zhang
Nicholas Carlini
E. D. Cubuk
Alexey Kurakin
Han Zhang
Colin Raffel
AAML
157
3,558
0
21 Jan 2020
ReMixMatch: Semi-Supervised Learning with Distribution Alignment and
  Augmentation Anchoring
ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring
David Berthelot
Nicholas Carlini
E. D. Cubuk
Alexey Kurakin
Kihyuk Sohn
Han Zhang
Colin Raffel
95
681
0
21 Nov 2019
Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning
Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross B. Girshick
SSL
204
12,085
0
13 Nov 2019
When Does Label Smoothing Help?
When Does Label Smoothing Help?
Rafael Müller
Simon Kornblith
Geoffrey E. Hinton
UQCV
204
1,950
0
06 Jun 2019
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
620
4,780
0
13 May 2019
MixMatch: A Holistic Approach to Semi-Supervised Learning
MixMatch: A Holistic Approach to Semi-Supervised Learning
David Berthelot
Nicholas Carlini
Ian Goodfellow
Nicolas Papernot
Avital Oliver
Colin Raffel
145
3,029
0
06 May 2019
Unsupervised Data Augmentation for Consistency Training
Unsupervised Data Augmentation for Consistency Training
Qizhe Xie
Zihang Dai
Eduard H. Hovy
Minh-Thang Luong
Quoc V. Le
135
2,316
0
29 Apr 2019
Representation Learning with Contrastive Predictive Coding
Representation Learning with Contrastive Predictive Coding
Aaron van den Oord
Yazhe Li
Oriol Vinyals
DRLSSL
327
10,302
0
10 Jul 2018
Co-teaching: Robust Training of Deep Neural Networks with Extremely
  Noisy Labels
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
Bo Han
Quanming Yao
Xingrui Yu
Gang Niu
Miao Xu
Weihua Hu
Ivor Tsang
Masashi Sugiyama
NoLa
113
2,069
0
18 Apr 2018
Adversarial Learning for Semi-Supervised Semantic Segmentation
Adversarial Learning for Semi-Supervised Semantic Segmentation
Wei-Chih Hung
Yi-Hsuan Tsai
Yan-Ting Liou
Yen-Yu Lin
Ming-Hsuan Yang
GANSSeg
120
552
0
22 Feb 2018
Encoder-Decoder with Atrous Separable Convolution for Semantic Image
  Segmentation
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
Liang-Chieh Chen
Yukun Zhu
George Papandreou
Florian Schroff
Hartwig Adam
SSeg
453
13,143
0
07 Feb 2018
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
280
9,764
0
25 Oct 2017
Virtual Adversarial Training: A Regularization Method for Supervised and
  Semi-Supervised Learning
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
Takeru Miyato
S. Maeda
Masanori Koyama
S. Ishii
GAN
148
2,734
0
13 Apr 2017
Mean teachers are better role models: Weight-averaged consistency
  targets improve semi-supervised deep learning results
Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
Antti Tarvainen
Harri Valpola
OODMoMe
332
1,274
0
06 Mar 2017
Temporal Ensembling for Semi-Supervised Learning
Temporal Ensembling for Semi-Supervised Learning
S. Laine
Timo Aila
UQCV
185
2,560
0
07 Oct 2016
The Cityscapes Dataset for Semantic Urban Scene Understanding
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
1.1K
11,623
0
06 Apr 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DVBDL
883
27,373
0
02 Dec 2015
Spatial Transformer Networks
Spatial Transformer Networks
Max Jaderberg
Karen Simonyan
Andrew Zisserman
Koray Kavukcuoglu
306
7,387
0
05 Jun 2015
1