ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.06360
  4. Cited By
v1v2 (latest)

3D Graph Contrastive Learning for Molecular Property Prediction

31 May 2022
Kisung Moon
Sunyoung Kwon
ArXiv (abs)PDFHTML

Papers citing "3D Graph Contrastive Learning for Molecular Property Prediction"

29 / 29 papers shown
Title
Contrastive Representation Learning for 3D Protein Structures
Contrastive Representation Learning for 3D Protein Structures
Pedro Hermosilla
Timo Ropinski
3DV
88
52
0
31 May 2022
Learning 3D Representations of Molecular Chirality with Invariance to
  Bond Rotations
Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations
Keir Adams
L. Pattanaik
Connor W. Coley
83
33
0
08 Oct 2021
3D Infomax improves GNNs for Molecular Property Prediction
3D Infomax improves GNNs for Molecular Property Prediction
Hannes Stärk
Dominique Beaini
Gabriele Corso
Prudencio Tossou
Christian Dallago
Stephan Günnemann
Pietro Lio
AI4CE
74
208
0
08 Oct 2021
Pre-training Molecular Graph Representation with 3D Geometry
Pre-training Molecular Graph Representation with 3D Geometry
Shengchao Liu
Hanchen Wang
Weiyang Liu
Joan Lasenby
Hongyu Guo
Jian Tang
172
317
0
07 Oct 2021
Learning Attributed Graph Representations with Communicative Message
  Passing Transformer
Learning Attributed Graph Representations with Communicative Message Passing Transformer
Jianwen Chen
Shuangjia Zheng
Ying Song
Jiahua Rao
Yuedong Yang
88
47
0
19 Jul 2021
ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for
  Property Prediction
ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for Property Prediction
Xiaomin Fang
Lihang Liu
Jieqiong Lei
Donglong He
Shanzhuo Zhang
Jingbo Zhou
Fan Wang
Hua Wu
Haifeng Wang
AI4CE
58
450
0
11 Jun 2021
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
  Ensembles
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles
O. Ganea
L. Pattanaik
Connor W. Coley
Regina Barzilay
K. Jensen
W. Green
Tommi Jaakkola
AI4CE
88
136
0
08 Jun 2021
Learning Gradient Fields for Molecular Conformation Generation
Learning Gradient Fields for Molecular Conformation Generation
Chence Shi
Shitong Luo
Minkai Xu
Jian Tang
DiffMAI4CE
75
215
0
09 May 2021
DIG: A Turnkey Library for Diving into Graph Deep Learning Research
DIG: A Turnkey Library for Diving into Graph Deep Learning Research
Meng Liu
Youzhi Luo
Limei Wang
Yaochen Xie
Haonan Yuan
...
Haoran Liu
Cong Fu
Bora Oztekin
Xuan Zhang
Shuiwang Ji
GNN
75
121
0
23 Mar 2021
Motif-Driven Contrastive Learning of Graph Representations
Motif-Driven Contrastive Learning of Graph Representations
Shichang Zhang
Ziniu Hu
Arjun Subramonian
Yizhou Sun
SSL
58
10
0
23 Dec 2020
ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular
  Property Prediction
ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular Property Prediction
Seyone Chithrananda
Gabriel Grand
Bharath Ramsundar
AI4CE
85
408
0
19 Oct 2020
Heterogeneous Molecular Graph Neural Networks for Predicting Molecule
  Properties
Heterogeneous Molecular Graph Neural Networks for Predicting Molecule Properties
Zeren Shui
George Karypis
58
63
0
26 Sep 2020
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
  Atomic-Orbital Features
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features
Zhuoran Qiao
Matthew Welborn
Anima Anandkumar
F. Manby
Thomas F. Miller
AI4CE
70
216
0
15 Jul 2020
Directional Message Passing for Molecular Graphs
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
124
875
0
06 Mar 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
369
18,778
0
13 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
511
42,449
0
03 Dec 2019
Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning
Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross B. Girshick
SSL
201
12,085
0
13 Nov 2019
Molecular Property Prediction: A Multilevel Quantum Interactions
  Modeling Perspective
Molecular Property Prediction: A Multilevel Quantum Interactions Modeling Perspective
Chengqiang Lu
Qi Liu
Chao Wang
Zhenya Huang
Peize Lin
Lixin He
AI4CE
66
193
0
25 Jun 2019
Strategies for Pre-training Graph Neural Networks
Strategies for Pre-training Graph Neural Networks
Weihua Hu
Bowen Liu
Joseph Gomes
Marinka Zitnik
Percy Liang
Vijay S. Pande
J. Leskovec
SSLAI4CE
116
1,404
0
29 May 2019
Analyzing Learned Molecular Representations for Property Prediction
Analyzing Learned Molecular Representations for Property Prediction
Kevin Kaichuang Yang
Kyle Swanson
Wengong Jin
Connor W. Coley
Philipp Eiden
...
Andrew Palmer
Volker Settels
Tommi Jaakkola
K. Jensen
Regina Barzilay
104
1,317
0
02 Apr 2019
Fast Graph Representation Learning with PyTorch Geometric
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DHGNN3DPC
226
4,341
0
06 Mar 2019
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLMSSLSSeg
1.8K
94,891
0
11 Oct 2018
N-Gram Graph: Simple Unsupervised Representation for Graphs, with
  Applications to Molecules
N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules
Shengchao Liu
M. F. Demirel
Yingyu Liang
GNNNAI
54
195
0
24 Jun 2018
SchNet: A continuous-filter convolutional neural network for modeling
  quantum interactions
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
155
1,076
0
26 Jun 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
701
131,652
0
12 Jun 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
593
7,455
0
04 Apr 2017
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNNSSL
641
29,076
0
09 Sep 2016
Molecular Graph Convolutions: Moving Beyond Fingerprints
Molecular Graph Convolutions: Moving Beyond Fingerprints
S. Kearnes
Kevin McCloskey
Marc Berndl
Vijay S. Pande
Patrick F. Riley
GNN
151
1,449
0
02 Mar 2016
Efficient Estimation of Word Representations in Vector Space
Efficient Estimation of Word Representations in Vector Space
Tomas Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
677
31,512
0
16 Jan 2013
1