Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.06038
Cited By
Region-Based Evidential Deep Learning to Quantify Uncertainty and Improve Robustness of Brain Tumor Segmentation
11 August 2022
Hao Li
Yang Nan
Javier Del Ser
Guang Yang
EDL
OOD
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Region-Based Evidential Deep Learning to Quantify Uncertainty and Improve Robustness of Brain Tumor Segmentation"
16 / 16 papers shown
Title
Uncertainty-Error correlations in Evidential Deep Learning models for biomedical segmentation
Hai Siong Tan
Kuancheng Wang
R. Mcbeth
UQCV
28
0
0
24 Oct 2024
DDEvENet: Evidence-based Ensemble Learning for Uncertainty-aware Brain Parcellation Using Diffusion MRI
Chenjun Li
Dian Yang
Shun Yao
Shuyue Wang
Ye Wu
...
C. Westin
L. O’Donnell
N. Sochen
O. Pasternak
Fan Zhang
UQCV
48
0
0
11 Sep 2024
A Comprehensive Survey on Evidential Deep Learning and Its Applications
Junyu Gao
Mengyuan Chen
Liangyu Xiang
Changsheng Xu
EDL
BDL
UQCV
50
5
0
07 Sep 2024
DuEDL: Dual-Branch Evidential Deep Learning for Scribble-Supervised Medical Image Segmentation
Yitong Yang
Xinli Xu
Haigen Hu
Haixia Long
Qianwei Zhou
Qiu Guan
FedML
MedIm
45
0
0
23 May 2024
An Evidential-enhanced Tri-Branch Consistency Learning Method for Semi-supervised Medical Image Segmentation
Zhenxi Zhang
Heng Zhou
Xiaoran Shi
Ran Ran
Chunna Tian
Feng Zhou
26
7
0
10 Apr 2024
Think Twice Before Selection: Federated Evidential Active Learning for Medical Image Analysis with Domain Shifts
Jiayi Chen
Benteng Ma
Hengfei Cui
Yong-quan Xia
OOD
FedML
29
12
0
05 Dec 2023
Evidential Uncertainty Quantification: A Variance-Based Perspective
Ruxiao Duan
B. Caffo
Harrison X. Bai
Haris I. Sair
Craig K. Jones
UD
EDL
UQCV
BDL
PER
42
13
0
19 Nov 2023
Uncertainty Estimation for Safety-critical Scene Segmentation via Fine-grained Reward Maximization
Hongzheng Yang
Cheng Chen
Yueyao Chen
Markus Scheppach
Hon-Chi Yip
Qi Dou
EDL
UQCV
26
8
0
05 Nov 2023
A review of uncertainty quantification in medical image analysis: probabilistic and non-probabilistic methods
Ling Huang
S. Ruan
Yucheng Xing
Mengling Feng
41
20
0
09 Oct 2023
Cross-supervised Dual Classifiers for Semi-supervised Medical Image Segmentation
Zhenxi Zhang
Ran Ran
Chunna Tian
Heng Zhou
Fan Yang
Xin Li
Zhicheng Jiao
34
2
0
25 May 2023
Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis
Benjamin Lambert
Florence Forbes
A. Tucholka
Senan Doyle
Harmonie Dehaene
M. Dojat
29
78
0
05 Oct 2022
Large-Kernel Attention for 3D Medical Image Segmentation
Hao Li
Yang Nan
Javier Del Ser
Guang Yang
MedIm
33
25
0
19 Jul 2022
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Dennis Ulmer
Christian Hardmeier
J. Frellsen
BDL
UQCV
UD
EDL
PER
48
48
0
06 Oct 2021
Deep and Statistical Learning in Biomedical Imaging: State of the Art in 3D MRI Brain Tumor Segmentation
K. R. M. Fernando
Cris P Tsokos
31
53
0
09 Mar 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1