ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.05119
  4. Cited By
Semi-Supervised Junction Tree Variational Autoencoder for Molecular
  Property Prediction
v1v2v3v4v5 (latest)

Semi-Supervised Junction Tree Variational Autoencoder for Molecular Property Prediction

10 August 2022
Atia Hamidizadeh
Tony Shen
Martin Ester
    DRL
ArXiv (abs)PDFHTML

Papers citing "Semi-Supervised Junction Tree Variational Autoencoder for Molecular Property Prediction"

21 / 21 papers shown
Title
ASGN: An Active Semi-supervised Graph Neural Network for Molecular
  Property Prediction
ASGN: An Active Semi-supervised Graph Neural Network for Molecular Property Prediction
Zhong Hao
Chengqiang Lu
Zheyuan Hu
Hongya Wang
Zhenya Huang
Qi Liu
Enhong Chen
Cheekong Lee
113
139
0
07 Jul 2020
GraphAF: a Flow-based Autoregressive Model for Molecular Graph
  Generation
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
Chence Shi
Minkai Xu
Zhaocheng Zhu
Weinan Zhang
Ming Zhang
Jian Tang
173
438
0
26 Jan 2020
Semi-Supervised Generative Modeling for Controllable Speech Synthesis
Semi-Supervised Generative Modeling for Controllable Speech Synthesis
Raza Habib
Soroosh Mariooryad
Matt Shannon
Eric Battenberg
RJ Skerry-Ryan
Daisy Stanton
David Kao
Tom Bagby
BDL
49
48
0
03 Oct 2019
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation
  Learning via Mutual Information Maximization
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization
Fan-Yun Sun
Jordan Hoffmann
Vikas Verma
Jian Tang
SSL
153
862
0
31 Jul 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDLSSLDRL
89
2,359
0
06 Jun 2019
Strategies for Pre-training Graph Neural Networks
Strategies for Pre-training Graph Neural Networks
Weihua Hu
Bowen Liu
Joseph Gomes
Marinka Zitnik
Percy Liang
Vijay S. Pande
J. Leskovec
SSLAI4CE
116
1,409
0
29 May 2019
Analyzing Learned Molecular Representations for Property Prediction
Analyzing Learned Molecular Representations for Property Prediction
Kevin Kaichuang Yang
Kyle Swanson
Wengong Jin
Connor W. Coley
Philipp Eiden
...
Andrew Palmer
Volker Settels
Tommi Jaakkola
K. Jensen
Regina Barzilay
104
1,322
0
02 Apr 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaMLGNNAI4TSAI4CE
780
8,554
0
03 Jan 2019
Constrained Generation of Semantically Valid Graphs via Regularizing
  Variational Autoencoders
Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders
Tengfei Ma
Jie Chen
Cao Xiao
123
210
0
07 Sep 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph
  Generation
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
293
902
0
07 Jun 2018
Conditional molecular design with deep generative models
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
226
182
0
30 Apr 2018
Syntax-Directed Variational Autoencoder for Structured Data
Syntax-Directed Variational Autoencoder for Structured Data
H. Dai
Yingtao Tian
Bo Dai
Steven Skiena
Le Song
102
329
0
24 Feb 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
352
1,369
0
12 Feb 2018
Deep Reinforcement Learning for De-Novo Drug Design
Deep Reinforcement Learning for De-Novo Drug Design
Mariya Popova
Olexandr Isayev
Alexander Tropsha
88
1,031
0
29 Nov 2017
Learning Disentangled Representations with Semi-Supervised Deep
  Generative Models
Learning Disentangled Representations with Semi-Supervised Deep Generative Models
Siddharth Narayanaswamy
Brooks Paige
Jan-Willem van de Meent
Alban Desmaison
Noah D. Goodman
Pushmeet Kohli
Frank Wood
Philip Torr
DRLCoGe
124
363
0
01 Jun 2017
Molecular De Novo Design through Deep Reinforcement Learning
Molecular De Novo Design through Deep Reinforcement Learning
Marcus Olivecrona
T. Blaschke
Ola Engkvist
Hongming Chen
BDL
128
1,016
0
25 Apr 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
596
7,485
0
04 Apr 2017
Grammar Variational Autoencoder
Grammar Variational Autoencoder
Matt J. Kusner
Brooks Paige
José Miguel Hernández-Lobato
BDLDRL
85
844
0
06 Mar 2017
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
171
2,939
0
07 Oct 2016
Auxiliary Deep Generative Models
Auxiliary Deep Generative Models
Lars Maaløe
C. Sønderby
Søren Kaae Sønderby
Ole Winther
DRLGAN
75
451
0
17 Feb 2016
Semi-Supervised Learning with Deep Generative Models
Semi-Supervised Learning with Deep Generative Models
Diederik P. Kingma
Danilo Jimenez Rezende
S. Mohamed
Max Welling
GANSSLBDL
88
2,742
0
20 Jun 2014
1