Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.04405
Cited By
v1
v2
v3 (latest)
Recovering the Graph Underlying Networked Dynamical Systems under Partial Observability: A Deep Learning Approach
8 August 2022
Sérgio Machado
Anirudh Sridhar
P. Gil
J. Henriques
J. M. F. Moura
A. Santos
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Recovering the Graph Underlying Networked Dynamical Systems under Partial Observability: A Deep Learning Approach"
14 / 14 papers shown
Title
An Unbiased Symmetric Matrix Estimator for Topology Inference under Partial Observability
Yupeng Chen
Zhiguo Wang
Xiaojing Shen
41
5
0
29 Mar 2022
Local Tomography of Large Networks under the Low-Observability Regime
A. Santos
Vincenzo Matta
Ali H. Sayed
46
27
0
23 May 2018
Generalized Network Dismantling
Xiaolong Ren
Niels Gleinig
Dirk Helbing
Nino Antulov-Fantulin
46
153
0
04 Jan 2018
SILVar: Single Index Latent Variable Models
Jonathan Mei
José M. F. Moura
81
24
0
09 May 2017
Signal Processing on Graphs: Causal Modeling of Unstructured Data
Jonathan Mei
José M. F. Moura
CML
AI4TS
64
191
0
28 Feb 2015
Causal Inference by Identification of Vector Autoregressive Processes with Hidden Components
Philipp Geiger
Kun Zhang
Biwei Huang
Dominik Janzing
Bernhard Schölkopf
CML
LLMSV
51
79
0
14 Nov 2014
Hardness of parameter estimation in graphical models
Guy Bresler
D. Gamarnik
Devavrat Shah
56
32
0
12 Sep 2014
Causal Inference in the Presence of Latent Variables and Selection Bias
Peter Spirtes
Christopher Meek
Thomas S. Richardson
CML
199
444
0
20 Feb 2013
Learning loopy graphical models with latent variables: Efficient methods and guarantees
Anima Anandkumar
R. Valluvan
145
50
0
17 Mar 2012
High-Dimensional Gaussian Graphical Model Selection: Walk Summability and Local Separation Criterion
Anima Anandkumar
Vincent Y. F. Tan
A. Willsky
108
90
0
06 Jul 2011
Learning the Dependence Graph of Time Series with Latent Factors
A. Jalali
Sujay Sanghavi
CML
86
44
0
09 Jun 2011
Learning high-dimensional directed acyclic graphs with latent and selection variables
Diego Colombo
Marloes H. Maathuis
M. Kalisch
Thomas S. Richardson
CML
126
466
0
29 Apr 2011
Learning Networks of Stochastic Differential Equations
José Bento
M. Ibrahimi
Andrea Montanari
128
73
0
01 Nov 2010
Latent variable graphical model selection via convex optimization
V. Chandrasekaran
P. Parrilo
A. Willsky
CML
207
509
0
06 Aug 2010
1