ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1011.0415
81
73

Learning Networks of Stochastic Differential Equations

1 November 2010
José Bento
M. Ibrahimi
Andrea Montanari
ArXivPDFHTML
Abstract

We consider linear models for stochastic dynamics. To any such model can be associated a network (namely a directed graph) describing which degrees of freedom interact under the dynamics. We tackle the problem of learning such a network from observation of the system trajectory over a time interval TTT. We analyze the ℓ1\ell_1ℓ1​-regularized least squares algorithm and, in the setting in which the underlying network is sparse, we prove performance guarantees that are \emph{uniform in the sampling rate} as long as this is sufficiently high. This result substantiates the notion of a well defined `time complexity' for the network inference problem.

View on arXiv
Comments on this paper