ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.04055
  4. Cited By
Neural Set Function Extensions: Learning with Discrete Functions in High
  Dimensions
v1v2 (latest)

Neural Set Function Extensions: Learning with Discrete Functions in High Dimensions

8 August 2022
Nikolaos Karalias
Joshua Robinson
Andreas Loukas
Stefanie Jegelka
ArXiv (abs)PDFHTML

Papers citing "Neural Set Function Extensions: Learning with Discrete Functions in High Dimensions"

50 / 51 papers shown
Title
Graph Neural Networks are Dynamic Programmers
Graph Neural Networks are Dynamic Programmers
Andrew Dudzik
Petar Velickovic
89
64
0
29 Mar 2022
Submodularity In Machine Learning and Artificial Intelligence
Submodularity In Machine Learning and Artificial Intelligence
J. Bilmes
52
57
0
31 Jan 2022
Neural Algorithmic Reasoners are Implicit Planners
Neural Algorithmic Reasoners are Implicit Planners
Andreea Deac
Petar Velivcković
Ognjen Milinković
Pierre-Luc Bacon
Jian Tang
Mladen Nikolic
OffRL
64
23
0
11 Oct 2021
Combinatorial Optimization with Physics-Inspired Graph Neural Networks
Combinatorial Optimization with Physics-Inspired Graph Neural Networks
M. Schuetz
J. K. Brubaker
H. Katzgraber
AI4CE
80
185
0
02 Jul 2021
Implicit MLE: Backpropagating Through Discrete Exponential Family
  Distributions
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions
Mathias Niepert
Pasquale Minervini
Luca Franceschi
62
85
0
03 Jun 2021
Neural Algorithmic Reasoning
Neural Algorithmic Reasoning
Petar Velickovic
Charles Blundell
NAIOOD
44
104
0
06 May 2021
CombOptNet: Fit the Right NP-Hard Problem by Learning Integer
  Programming Constraints
CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints
Anselm Paulus
Michal Rolínek
Vít Musil
Brandon Amos
Georg Martius
43
61
0
05 May 2021
Combinatorial optimization and reasoning with graph neural networks
Combinatorial optimization and reasoning with graph neural networks
Quentin Cappart
Didier Chételat
Elias Boutros Khalil
Andrea Lodi
Christopher Morris
Petar Velickovic
AI4CE
79
358
0
18 Feb 2021
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDLUQCV
343
1,928
0
12 Nov 2020
Complex Query Answering with Neural Link Predictors
Complex Query Answering with Neural Link Predictors
Erik Arakelyan
Daniel Daza
Pasquale Minervini
Michael Cochez
71
134
0
06 Nov 2020
Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient
  Estimator
Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient Estimator
Max B. Paulus
Chris J. Maddison
Andreas Krause
BDL
67
42
0
09 Oct 2020
TUDataset: A collection of benchmark datasets for learning with graphs
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
236
821
0
16 Jul 2020
Strong Generalization and Efficiency in Neural Programs
Strong Generalization and Efficiency in Neural Programs
Yujia Li
Felix Gimeno
Pushmeet Kohli
Oriol Vinyals
109
17
0
07 Jul 2020
Neural Execution Engines: Learning to Execute Subroutines
Neural Execution Engines: Learning to Execute Subroutines
Yujun Yan
Kevin Swersky
Danai Koutra
Parthasarathy Ranganathan
Milad Hashemi
NAI
59
42
0
15 Jun 2020
Gradient Estimation with Stochastic Softmax Tricks
Gradient Estimation with Stochastic Softmax Tricks
Max B. Paulus
Dami Choi
Daniel Tarlow
Andreas Krause
Chris J. Maddison
BDL
76
88
0
15 Jun 2020
Reinforcement Learning for Combinatorial Optimization: A Survey
Reinforcement Learning for Combinatorial Optimization: A Survey
Nina Mazyavkina
S. Sviridov
Sergei Ivanov
Evgeny Burnaev
107
624
0
07 Mar 2020
Query2box: Reasoning over Knowledge Graphs in Vector Space using Box
  Embeddings
Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
Hongyu Ren
Weihua Hu
J. Leskovec
56
309
0
14 Feb 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
375
18,778
0
13 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
520
42,559
0
03 Dec 2019
Differentiable Convex Optimization Layers
Differentiable Convex Optimization Layers
Akshay Agrawal
Brandon Amos
Shane T. Barratt
Stephen P. Boyd
Steven Diamond
Zico Kolter
88
663
0
28 Oct 2019
Neural Execution of Graph Algorithms
Neural Execution of Graph Algorithms
Petar Velickovic
Rex Ying
Matilde Padovano
R. Hadsell
Charles Blundell
GNN
85
169
0
23 Oct 2019
Graph Neural Networks for Maximum Constraint Satisfaction
Graph Neural Networks for Maximum Constraint Satisfaction
Jan Toenshoff
Martin Ritzert
Hinrikus Wolf
Martin Grohe
GNNNAIAI4CE
48
60
0
18 Sep 2019
Trajectory-wise Control Variates for Variance Reduction in Policy
  Gradient Methods
Trajectory-wise Control Variates for Variance Reduction in Policy Gradient Methods
Ching-An Cheng
Xinyan Yan
Byron Boots
57
22
0
08 Aug 2019
What Can Neural Networks Reason About?
What Can Neural Networks Reason About?
Keyulu Xu
Jingling Li
Mozhi Zhang
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
NAIAI4CE
73
246
0
30 May 2019
SATNet: Bridging deep learning and logical reasoning using a
  differentiable satisfiability solver
SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver
Po-Wei Wang
P. Donti
Bryan Wilder
Zico Kolter
LRMNAI
78
265
0
29 May 2019
Optimal approximation for unconstrained non-submodular minimization
Optimal approximation for unconstrained non-submodular minimization
Marwa El Halabi
Stefanie Jegelka
39
25
0
29 May 2019
Fast Graph Representation Learning with PyTorch Geometric
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DHGNN3DPC
229
4,341
0
06 Mar 2019
Reconciling modern machine learning practice and the bias-variance
  trade-off
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
240
1,655
0
28 Dec 2018
Machine Learning for Combinatorial Optimization: a Methodological Tour
  d'Horizon
Machine Learning for Combinatorial Optimization: a Methodological Tour d'Horizon
Yoshua Bengio
Andrea Lodi
Antoine Prouvost
155
1,391
0
15 Nov 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLTODL
224
1,275
0
04 Oct 2018
Embedding Logical Queries on Knowledge Graphs
Embedding Logical Queries on Knowledge Graphs
William L. Hamilton
Payal Bajaj
Marinka Zitnik
Dan Jurafsky
J. Leskovec
NAI
82
290
0
05 Jun 2018
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CENAI
761
3,129
0
04 Jun 2018
Variance Reduction for Policy Gradient with Action-Dependent Factorized
  Baselines
Variance Reduction for Policy Gradient with Action-Dependent Factorized Baselines
Cathy Wu
Aravind Rajeswaran
Yan Duan
Vikash Kumar
Alexandre M. Bayen
Sham Kakade
Igor Mordatch
Pieter Abbeel
OffRL
63
153
0
20 Mar 2018
Backpropagation through the Void: Optimizing control variates for
  black-box gradient estimation
Backpropagation through the Void: Optimizing control variates for black-box gradient estimation
Will Grathwohl
Dami Choi
Yuhuai Wu
Geoffrey Roeder
David Duvenaud
99
300
0
31 Oct 2017
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
479
20,225
0
30 Oct 2017
Combinatorial Penalties: Which structures are preserved by convex
  relaxations?
Combinatorial Penalties: Which structures are preserved by convex relaxations?
Marwa El Halabi
Francis R. Bach
Volkan Cevher
62
16
0
17 Oct 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
722
132,199
0
12 Jun 2017
OptNet: Differentiable Optimization as a Layer in Neural Networks
OptNet: Differentiable Optimization as a Layer in Neural Networks
Brandon Amos
J. Zico Kolter
163
971
0
01 Mar 2017
Neural Combinatorial Optimization with Reinforcement Learning
Neural Combinatorial Optimization with Reinforcement Learning
Irwan Bello
Hieu H. Pham
Quoc V. Le
Mohammad Norouzi
Samy Bengio
158
1,492
0
29 Nov 2016
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic
S. Gu
Timothy Lillicrap
Zoubin Ghahramani
Richard Turner
Sergey Levine
OffRLBDL
88
345
0
07 Nov 2016
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
344
5,372
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
196
2,538
0
02 Nov 2016
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
  Systems
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
Martín Abadi
Ashish Agarwal
P. Barham
E. Brevdo
Zhiwen Chen
...
Pete Warden
Martin Wattenberg
Martin Wicke
Yuan Yu
Xiaoqiang Zheng
276
11,151
0
14 Mar 2016
Gated Graph Sequence Neural Networks
Gated Graph Sequence Neural Networks
Yujia Li
Daniel Tarlow
Marc Brockschmidt
R. Zemel
GNN
347
3,285
0
17 Nov 2015
Submodular Functions: from Discrete to Continous Domains
Submodular Functions: from Discrete to Continous Domains
Francis R. Bach
125
149
0
02 Nov 2015
On the tightness of an SDP relaxation of k-means
On the tightness of an SDP relaxation of k-means
Takayuki Iguchi
D. Mixon
Jesse Peterson
Soledad Villar
94
33
0
18 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,260
0
22 Dec 2014
A useful variant of the Davis--Kahan theorem for statisticians
A useful variant of the Davis--Kahan theorem for statisticians
Yi Yu
Tengyao Wang
R. Samworth
98
579
0
04 May 2014
Estimating or Propagating Gradients Through Stochastic Neurons for
  Conditional Computation
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
Yoshua Bengio
Nicholas Léonard
Aaron Courville
384
3,151
0
15 Aug 2013
Theano: new features and speed improvements
Theano: new features and speed improvements
Frédéric Bastien
Pascal Lamblin
Razvan Pascanu
James Bergstra
Ian Goodfellow
Arnaud Bergeron
Nicolas Bouchard
David Warde-Farley
Yoshua Bengio
94
1,420
0
23 Nov 2012
12
Next