ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.03471
  4. Cited By
Oversquashing in GNNs through the lens of information contraction and
  graph expansion

Oversquashing in GNNs through the lens of information contraction and graph expansion

6 August 2022
P. Banerjee
Kedar Karhadkar
Yu Guang Wang
Uri Alon
Guido Montúfar
ArXivPDFHTML

Papers citing "Oversquashing in GNNs through the lens of information contraction and graph expansion"

22 / 22 papers shown
Title
Cayley Graph Propagation
Cayley Graph Propagation
JJ Wilson
Maya Bechler-Speicher
Petar Veličković
173
6
0
04 Oct 2024
Joint Graph Rewiring and Feature Denoising via Spectral Resonance
Joint Graph Rewiring and Feature Denoising via Spectral Resonance
Jonas Linkerhagner
Cheng Shi
Ivan Dokmanić
160
0
0
13 Aug 2024
Conditional Shift-Robust Conformal Prediction for Graph Neural Network
Conditional Shift-Robust Conformal Prediction for Graph Neural Network
Akansha Agrawal
UQCV
169
1
0
20 May 2024
Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching
Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching
Federico Errica
Henrik Christiansen
Viktor Zaverkin
Takashi Maruyama
Mathias Niepert
Francesco Alesiani
117
10
0
27 Dec 2023
Long Range Graph Benchmark
Long Range Graph Benchmark
Vijay Prakash Dwivedi
Ladislav Rampášek
Mikhail Galkin
Alipanah Parviz
Guy Wolf
Anh Tuan Luu
Dominique Beaini
76
209
0
16 Jun 2022
Understanding over-squashing and bottlenecks on graphs via curvature
Understanding over-squashing and bottlenecks on graphs via curvature
Jake Topping
Francesco Di Giovanni
B. Chamberlain
Xiaowen Dong
M. Bronstein
101
442
0
29 Nov 2021
DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural
  Networks
DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks
Pál András Papp
Karolis Martinkus
Lukas Faber
Roger Wattenhofer
GNN
55
140
0
11 Nov 2021
On the Bottleneck of Graph Neural Networks and its Practical
  Implications
On the Bottleneck of Graph Neural Networks and its Practical Implications
Uri Alon
Eran Yahav
GNN
79
685
0
09 Jun 2020
Generalization and Representational Limits of Graph Neural Networks
Generalization and Representational Limits of Graph Neural Networks
Vikas Garg
Stefanie Jegelka
Tommi Jaakkola
GNN
94
312
0
14 Feb 2020
Diffusion Improves Graph Learning
Diffusion Improves Graph Learning
Johannes Klicpera
Stefan Weißenberger
Stephan Günnemann
GNN
121
704
0
28 Oct 2019
DropEdge: Towards Deep Graph Convolutional Networks on Node
  Classification
DropEdge: Towards Deep Graph Convolutional Networks on Node Classification
Yu Rong
Wenbing Huang
Tingyang Xu
Junzhou Huang
101
1,334
0
25 Jul 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
535
8,496
0
03 Jan 2019
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
210
7,623
0
01 Oct 2018
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
490
1,977
0
09 Jun 2018
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
584
3,112
0
04 Jun 2018
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
418
20,061
0
30 Oct 2017
Inductive Representation Learning on Large Graphs
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
448
15,179
0
07 Jun 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
435
7,431
0
04 Apr 2017
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
573
28,964
0
09 Sep 2016
Discriminative Embeddings of Latent Variable Models for Structured Data
Discriminative Embeddings of Latent Variable Models for Structured Data
H. Dai
Bo Dai
Le Song
BDL
117
695
0
17 Mar 2016
Expanders via Local Edge Flips
Expanders via Local Edge Flips
Zeyuan Allen-Zhu
Aditya Bhaskara
Silvio Lattanzi
Vahab Mirrokni
L. Orecchia
32
15
0
27 Oct 2015
Strong data-processing inequalities for channels and Bayesian networks
Strong data-processing inequalities for channels and Bayesian networks
Yury Polyanskiy
Yihong Wu
38
113
0
25 Aug 2015
1