Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.03471
Cited By
Oversquashing in GNNs through the lens of information contraction and graph expansion
6 August 2022
P. Banerjee
Kedar Karhadkar
Yu Guang Wang
Uri Alon
Guido Montúfar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Oversquashing in GNNs through the lens of information contraction and graph expansion"
22 / 22 papers shown
Title
Cayley Graph Propagation
JJ Wilson
Maya Bechler-Speicher
Petar Veličković
173
6
0
04 Oct 2024
Joint Graph Rewiring and Feature Denoising via Spectral Resonance
Jonas Linkerhagner
Cheng Shi
Ivan Dokmanić
160
0
0
13 Aug 2024
Conditional Shift-Robust Conformal Prediction for Graph Neural Network
Akansha Agrawal
UQCV
169
1
0
20 May 2024
Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching
Federico Errica
Henrik Christiansen
Viktor Zaverkin
Takashi Maruyama
Mathias Niepert
Francesco Alesiani
117
10
0
27 Dec 2023
Long Range Graph Benchmark
Vijay Prakash Dwivedi
Ladislav Rampášek
Mikhail Galkin
Alipanah Parviz
Guy Wolf
Anh Tuan Luu
Dominique Beaini
76
209
0
16 Jun 2022
Understanding over-squashing and bottlenecks on graphs via curvature
Jake Topping
Francesco Di Giovanni
B. Chamberlain
Xiaowen Dong
M. Bronstein
101
442
0
29 Nov 2021
DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks
Pál András Papp
Karolis Martinkus
Lukas Faber
Roger Wattenhofer
GNN
55
140
0
11 Nov 2021
On the Bottleneck of Graph Neural Networks and its Practical Implications
Uri Alon
Eran Yahav
GNN
79
685
0
09 Jun 2020
Generalization and Representational Limits of Graph Neural Networks
Vikas Garg
Stefanie Jegelka
Tommi Jaakkola
GNN
94
312
0
14 Feb 2020
Diffusion Improves Graph Learning
Johannes Klicpera
Stefan Weißenberger
Stephan Günnemann
GNN
121
704
0
28 Oct 2019
DropEdge: Towards Deep Graph Convolutional Networks on Node Classification
Yu Rong
Wenbing Huang
Tingyang Xu
Junzhou Huang
101
1,334
0
25 Jul 2019
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
535
8,496
0
03 Jan 2019
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
210
7,623
0
01 Oct 2018
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
490
1,977
0
09 Jun 2018
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
584
3,112
0
04 Jun 2018
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
418
20,061
0
30 Oct 2017
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
448
15,179
0
07 Jun 2017
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
435
7,431
0
04 Apr 2017
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
573
28,964
0
09 Sep 2016
Discriminative Embeddings of Latent Variable Models for Structured Data
H. Dai
Bo Dai
Le Song
BDL
117
695
0
17 Mar 2016
Expanders via Local Edge Flips
Zeyuan Allen-Zhu
Aditya Bhaskara
Silvio Lattanzi
Vahab Mirrokni
L. Orecchia
32
15
0
27 Oct 2015
Strong data-processing inequalities for channels and Bayesian networks
Yury Polyanskiy
Yihong Wu
38
113
0
25 Aug 2015
1