Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.13779
Cited By
Physical Pooling Functions in Graph Neural Networks for Molecular Property Prediction
27 July 2022
Artur M. Schweidtmann
Jan G. Rittig
Jana M. Weber
Martin Grohe
Manuel Dahmen
K. Leonhard
Alexander Mitsos
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Physical Pooling Functions in Graph Neural Networks for Molecular Property Prediction"
6 / 6 papers shown
Title
SA-GAT-SR: Self-Adaptable Graph Attention Networks with Symbolic Regression for high-fidelity material property prediction
Junchi Liu
Ying Tang
Sergei Tretiak
Wenhui Duan
Liujiang Zhou
87
0
0
01 May 2025
Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures
Shuo-feng Zhang
Yang Liu
Lei Xie
GNN
42
60
0
15 Nov 2020
Analyzing Learned Molecular Representations for Property Prediction
Kevin Kaichuang Yang
Kyle Swanson
Wengong Jin
Connor W. Coley
Philipp Eiden
...
Andrew Palmer
Volker Settels
Tommi Jaakkola
K. Jensen
Regina Barzilay
89
1,305
0
02 Apr 2019
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Christopher Morris
Martin Ritzert
Matthias Fey
William L. Hamilton
J. E. Lenssen
Gaurav Rattan
Martin Grohe
GNN
144
1,625
0
04 Oct 2018
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
193
7,554
0
01 Oct 2018
Convolutional Networks on Graphs for Learning Molecular Fingerprints
David Duvenaud
D. Maclaurin
J. Aguilera-Iparraguirre
Rafael Gómez-Bombarelli
Timothy D. Hirzel
Alán Aspuru-Guzik
Ryan P. Adams
GNN
170
3,337
0
30 Sep 2015
1