Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.13321
Cited By
DynaMarks: Defending Against Deep Learning Model Extraction Using Dynamic Watermarking
27 July 2022
Abhishek Chakraborty
Daniel Xing
Yuntao Liu
Ankur Srivastava
AAML
MLAU
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"DynaMarks: Defending Against Deep Learning Model Extraction Using Dynamic Watermarking"
20 / 20 papers shown
Title
Entangled Watermarks as a Defense against Model Extraction
Hengrui Jia
Christopher A. Choquette-Choo
Varun Chandrasekaran
Nicolas Papernot
WaLM
AAML
77
220
0
27 Feb 2020
fastai: A Layered API for Deep Learning
Jeremy Howard
Sylvain Gugger
AI4CE
125
867
0
11 Feb 2020
Deep Neural Network Fingerprinting by Conferrable Adversarial Examples
Nils Lukas
Yuxuan Zhang
Florian Kerschbaum
MLAU
FedML
AAML
64
145
0
02 Dec 2019
Defending Against Model Stealing Attacks with Adaptive Misinformation
Sanjay Kariyappa
Moinuddin K. Qureshi
MLAU
AAML
49
108
0
16 Nov 2019
RIGA: Covert and Robust White-Box Watermarking of Deep Neural Networks
Tianhao Wang
Florian Kerschbaum
AAML
61
36
0
31 Oct 2019
Extraction of Complex DNN Models: Real Threat or Boogeyman?
B. Atli
S. Szyller
Mika Juuti
Samuel Marchal
Nadarajah Asokan
MLAU
MIACV
54
45
0
11 Oct 2019
DAWN: Dynamic Adversarial Watermarking of Neural Networks
S. Szyller
B. Atli
Samuel Marchal
Nadarajah Asokan
MLAU
AAML
51
179
0
03 Jun 2019
A framework for the extraction of Deep Neural Networks by leveraging public data
Soham Pal
Yash Gupta
Aditya Shukla
Aditya Kanade
S. Shevade
V. Ganapathy
FedML
MLAU
MIACV
68
56
0
22 May 2019
Knockoff Nets: Stealing Functionality of Black-Box Models
Tribhuvanesh Orekondy
Bernt Schiele
Mario Fritz
MLAU
100
535
0
06 Dec 2018
Edge Intelligence: On-Demand Deep Learning Model Co-Inference with Device-Edge Synergy
En Li
Zhi Zhou
Xu Chen
51
328
0
20 Jun 2018
Defending Against Machine Learning Model Stealing Attacks Using Deceptive Perturbations
Taesung Lee
Ben Edwards
Ian Molloy
D. Su
AAML
62
41
0
31 May 2018
Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring
Yossi Adi
Carsten Baum
Moustapha Cissé
Benny Pinkas
Joseph Keshet
61
679
0
13 Feb 2018
Digital Watermarking for Deep Neural Networks
Yuki Nagai
Yusuke Uchida
S. Sakazawa
Shiníchi Satoh
WIGM
57
144
0
06 Feb 2018
Adversarial Frontier Stitching for Remote Neural Network Watermarking
Erwan Le Merrer
P. Pérez
Gilles Trédan
MLAU
AAML
76
338
0
06 Nov 2017
BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain
Tianyu Gu
Brendan Dolan-Gavitt
S. Garg
SILM
127
1,772
0
22 Aug 2017
Embedding Watermarks into Deep Neural Networks
Yusuke Uchida
Yuki Nagai
S. Sakazawa
Shiníchi Satoh
122
609
0
15 Jan 2017
Stealing Machine Learning Models via Prediction APIs
Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
SILM
MLAU
107
1,807
0
09 Sep 2016
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
75
3,678
0
08 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.6K
100,386
0
04 Sep 2014
1