ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.12805
  4. Cited By
Neural Design for Genetic Perturbation Experiments
v1v2 (latest)

Neural Design for Genetic Perturbation Experiments

26 July 2022
Aldo Pacchiano
Drausin Wulsin
Robert A. Barton
L. Voloch
ArXiv (abs)PDFHTML

Papers citing "Neural Design for Genetic Perturbation Experiments"

29 / 29 papers shown
Title
Efficient Data Selection for Training Genomic Perturbation Models
Efficient Data Selection for Training Genomic Perturbation Models
G. Panagopoulos
J. Lutzeyer
Sofiane Ennadir
Michalis Vazirgiannis
Jun Pang
480
0
0
18 Mar 2025
Neural Pseudo-Label Optimism for the Bank Loan Problem
Neural Pseudo-Label Optimism for the Bank Loan Problem
Aldo Pacchiano
Shaun Singh
Edward Chou
Alexander C. Berg
Jakob N. Foerster
36
7
0
03 Dec 2021
GeneDisco: A Benchmark for Experimental Design in Drug Discovery
GeneDisco: A Benchmark for Experimental Design in Drug Discovery
Arash Mehrjou
Ashkan Soleymani
Andrew Jesson
Pascal Notin
Y. Gal
Stefan Bauer
Patrick Schwab
78
21
0
22 Oct 2021
Learning Neural Causal Models with Active Interventions
Learning Neural Causal Models with Active Interventions
Nino Scherrer
O. Bilaniuk
Yashas Annadani
Anirudh Goyal
Patrick Schwab
Bernhard Schölkopf
Michael C. Mozer
Yoshua Bengio
Stefan Bauer
Nan Rosemary Ke
CML
98
44
0
06 Sep 2021
Matching a Desired Causal State via Shift Interventions
Matching a Desired Causal State via Shift Interventions
Jiaqi Zhang
C. Squires
Caroline Uhler
82
16
0
05 Jul 2021
Gone Fishing: Neural Active Learning with Fisher Embeddings
Gone Fishing: Neural Active Learning with Fisher Embeddings
Jordan T. Ash
Surbhi Goel
A. Krishnamurthy
Sham Kakade
64
88
0
17 Jun 2021
Near-Optimal Multi-Perturbation Experimental Design for Causal Structure
  Learning
Near-Optimal Multi-Perturbation Experimental Design for Causal Structure Learning
Scott Sussex
Andreas Krause
Caroline Uhler
CML
62
20
0
28 May 2021
Regret Bound Balancing and Elimination for Model Selection in Bandits
  and RL
Regret Bound Balancing and Elimination for Model Selection in Bandits and RL
Aldo Pacchiano
Christoph Dann
Claudio Gentile
Peter L. Bartlett
75
49
0
24 Dec 2020
Neural Contextual Bandits with Deep Representation and Shallow
  Exploration
Neural Contextual Bandits with Deep Representation and Shallow Exploration
Pan Xu
Zheng Wen
Handong Zhao
Quanquan Gu
OffRL
78
78
0
03 Dec 2020
Online Model Selection for Reinforcement Learning with Function
  Approximation
Online Model Selection for Reinforcement Learning with Function Approximation
Jonathan Lee
Aldo Pacchiano
Vidya Muthukumar
Weihao Kong
Emma Brunskill
OffRL
50
37
0
19 Nov 2020
Quantile Bandits for Best Arms Identification
Quantile Bandits for Best Arms Identification
Mengyan Zhang
Cheng Soon Ong
31
13
0
22 Oct 2020
Towards Tractable Optimism in Model-Based Reinforcement Learning
Towards Tractable Optimism in Model-Based Reinforcement Learning
Aldo Pacchiano
Philip J. Ball
Jack Parker-Holder
K. Choromanski
Stephen J. Roberts
OffRL
41
12
0
21 Jun 2020
Model Selection in Contextual Stochastic Bandit Problems
Model Selection in Contextual Stochastic Bandit Problems
Aldo Pacchiano
My Phan
Yasin Abbasi-Yadkori
Anup B. Rao
Julian Zimmert
Tor Lattimore
Csaba Szepesvári
178
94
0
03 Mar 2020
Effective Diversity in Population Based Reinforcement Learning
Effective Diversity in Population Based Reinforcement Learning
Jack Parker-Holder
Aldo Pacchiano
K. Choromanski
Stephen J. Roberts
104
164
0
03 Feb 2020
Discriminative Active Learning
Discriminative Active Learning
Daniel Gissin
Shai Shalev-Shwartz
58
178
0
15 Jul 2019
BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian
  Active Learning
BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning
Andreas Kirsch
Joost R. van Amersfoort
Y. Gal
FedML
87
629
0
19 Jun 2019
Batch Active Learning Using Determinantal Point Processes
Batch Active Learning Using Determinantal Point Processes
Erdem Biyik
Kenneth Wang
Nima Anari
Dorsa Sadigh
71
62
0
19 Jun 2019
Worst-Case Regret Bounds for Exploration via Randomized Value Functions
Worst-Case Regret Bounds for Exploration via Randomized Value Functions
Daniel Russo
OffRL
48
88
0
07 Jun 2019
Adversarial Active Learning for Deep Networks: a Margin Based Approach
Adversarial Active Learning for Deep Networks: a Margin Based Approach
Mélanie Ducoffe
F. Precioso
GANAAML
138
276
0
27 Feb 2018
Deep Active Learning over the Long Tail
Deep Active Learning over the Long Tail
Yonatan Geifman
Ran El-Yaniv
3DPC
65
143
0
02 Nov 2017
Budgeted Experiment Design for Causal Structure Learning
Budgeted Experiment Design for Causal Structure Learning
AmirEmad Ghassami
Saber Salehkaleybar
Negar Kiyavash
Elias Bareinboim
CML
92
64
0
11 Sep 2017
Faster Greedy MAP Inference for Determinantal Point Processes
Faster Greedy MAP Inference for Determinantal Point Processes
Insu Han
P. Kambadur
KyoungSoo Park
Jinwoo Shin
49
25
0
09 Mar 2017
Corralling a Band of Bandit Algorithms
Corralling a Band of Bandit Algorithms
Alekh Agarwal
Haipeng Luo
Behnam Neyshabur
Robert Schapire
149
157
0
19 Dec 2016
Batched Gaussian Process Bandit Optimization via Determinantal Point
  Processes
Batched Gaussian Process Bandit Optimization via Determinantal Point Processes
Tarun Kathuria
Amit Deshpande
Pushmeet Kohli
GP
52
103
0
13 Nov 2016
Learning Optimal Interventions
Learning Optimal Interventions
Jonas W. Mueller
David N. Reshef
George Du
Tommi Jaakkola
31
9
0
16 Jun 2016
Scalable Bayesian Optimization Using Deep Neural Networks
Scalable Bayesian Optimization Using Deep Neural Networks
Jasper Snoek
Oren Rippel
Kevin Swersky
Ryan Kiros
N. Satish
N. Sundaram
Md. Mostofa Ali Patwary
P. Prabhat
Ryan P. Adams
BDLUQCV
95
1,045
0
19 Feb 2015
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
252
1,140
0
25 Jul 2012
Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process
  Bandit Optimization
Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process Bandit Optimization
Thomas Desautels
Andreas Krause
J. W. Burdick
104
473
0
27 Jun 2012
Gaussian Process Optimization in the Bandit Setting: No Regret and
  Experimental Design
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
Niranjan Srinivas
Andreas Krause
Sham Kakade
Matthias Seeger
152
1,624
0
21 Dec 2009
1