Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.08670
Cited By
Gradient-based data and parameter dimension reduction for Bayesian models: an information theoretic perspective
18 July 2022
Ricardo Baptista
Youssef Marzouk
O. Zahm
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gradient-based data and parameter dimension reduction for Bayesian models: an information theoretic perspective"
18 / 18 papers shown
Title
Coupled Input-Output Dimension Reduction: Application to Goal-oriented Bayesian Experimental Design and Global Sensitivity Analysis
Qiao Chen
Elise Arnaud
Ricardo Baptista
O. Zahm
89
1
0
19 Jun 2024
Learning non-Gaussian graphical models via Hessian scores and triangular transport
Ricardo Baptista
Youssef Marzouk
Rebecca E. Morrison
O. Zahm
71
23
0
08 Jan 2021
A unified performance analysis of likelihood-informed subspace methods
Tiangang Cui
X. Tong
64
26
0
07 Jan 2021
Optimal dimension dependence of the Metropolis-Adjusted Langevin Algorithm
Sinho Chewi
Chen Lu
Kwangjun Ahn
Xiang Cheng
Thibaut Le Gouic
Philippe Rigollet
67
66
0
23 Dec 2020
BayesFlow: Learning complex stochastic models with invertible neural networks
Stefan T. Radev
U. Mertens
A. Voss
Lynton Ardizzone
Ullrich Kothe
BDL
292
197
0
13 Mar 2020
Projected Stein Variational Gradient Descent
Peng Chen
Omar Ghattas
BDL
83
70
0
09 Feb 2020
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCV
BDL
78
144
0
17 Jul 2019
Coupling techniques for nonlinear ensemble filtering
Alessio Spantini
Ricardo Baptista
Youssef Marzouk
90
76
0
30 Jun 2019
LR-GLM: High-Dimensional Bayesian Inference Using Low-Rank Data Approximations
Brian L. Trippe
Jonathan H. Huggins
Raj Agrawal
Tamara Broderick
BDL
61
9
0
17 May 2019
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
128
117
0
08 Jun 2018
Likelihood-free inference with emulator networks
Jan-Matthis Lueckmann
Giacomo Bassetto
Theofanis Karaletsos
Jakob H. Macke
165
128
0
23 May 2018
Automated Scalable Bayesian Inference via Hilbert Coresets
Trevor Campbell
Tamara Broderick
78
127
0
13 Oct 2017
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
305
4,812
0
04 Jan 2016
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
322
4,197
0
21 May 2015
Dimension-independent likelihood-informed MCMC
Tiangang Cui
K. Law
Youssef M. Marzouk
75
200
0
13 Nov 2014
Optimal low-rank approximations of Bayesian linear inverse problems
Alessio Spantini
A. Solonen
Tiangang Cui
James Martin
L. Tenorio
Youssef Marzouk
99
130
0
13 Jul 2014
Likelihood-informed dimension reduction for nonlinear inverse problems
Tiangang Cui
James Martin
Youssef M. Marzouk
A. Solonen
Alessio Spantini
85
159
0
19 Mar 2014
The pseudo-marginal approach for efficient Monte Carlo computations
Christophe Andrieu
Gareth O. Roberts
189
895
0
31 Mar 2009
1