ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.06655
  4. Cited By
Improving the Accuracy of Marginal Approximations in Likelihood-Free
  Inference via Localisation

Improving the Accuracy of Marginal Approximations in Likelihood-Free Inference via Localisation

14 July 2022
Christopher C. Drovandi
David J. Nott
David T. Frazier
ArXiv (abs)PDFHTML

Papers citing "Improving the Accuracy of Marginal Approximations in Likelihood-Free Inference via Localisation"

13 / 13 papers shown
Title
Misspecification-robust likelihood-free inference in high dimensions
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
216
9
0
17 Feb 2025
Bayesian Synthetic Likelihood
Bayesian Synthetic Likelihood
David T. Frazier
Christopher C. Drovandi
David J. Nott
175
220
0
09 May 2023
Truncated Marginal Neural Ratio Estimation
Truncated Marginal Neural Ratio Estimation
Benjamin Kurt Miller
A. Cole
Patrick Forré
Gilles Louppe
Christoph Weniger
104
38
0
02 Jul 2021
Sequential Neural Posterior and Likelihood Approximation
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
413
33
0
12 Feb 2021
Solving high-dimensional parameter inference: marginal posterior
  densities & Moment Networks
Solving high-dimensional parameter inference: marginal posterior densities & Moment Networks
N. Jeffrey
Benjamin Dan Wandelt
64
39
0
11 Nov 2020
BayesFlow: Learning complex stochastic models with invertible neural
  networks
BayesFlow: Learning complex stochastic models with invertible neural networks
Stefan T. Radev
U. Mertens
A. Voss
Lynton Ardizzone
Ullrich Kothe
BDL
288
197
0
13 Mar 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
207
1,711
0
05 Dec 2019
Likelihood-free approximate Gibbs sampling
Likelihood-free approximate Gibbs sampling
G. S. Rodrigues
David J. Nott
Scott A. Sisson
49
25
0
11 Jun 2019
Automatic Posterior Transformation for Likelihood-Free Inference
Automatic Posterior Transformation for Likelihood-Free Inference
David S. Greenberg
M. Nonnenmacher
Jakob H. Macke
384
330
0
17 May 2019
Adaptive Gaussian Copula ABC
Adaptive Gaussian Copula ABC
Yanzhi Chen
Michael U. Gutmann
TPM
149
27
0
27 Feb 2019
Likelihood-free inference by ratio estimation
Likelihood-free inference by ratio estimation
Owen Thomas
Ritabrata Dutta
J. Corander
Samuel Kaski
Michael U. Gutmann
190
151
0
30 Nov 2016
The Rate of Convergence for Approximate Bayesian Computation
The Rate of Convergence for Approximate Bayesian Computation
Stuart Barber
J. Voss
M. Webster
61
80
0
08 Nov 2013
Non-linear regression models for Approximate Bayesian Computation
Non-linear regression models for Approximate Bayesian Computation
M. Blum
O. François
215
484
0
24 Sep 2008
1