ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.05742
  4. Cited By
Reactive Exploration to Cope with Non-Stationarity in Lifelong
  Reinforcement Learning
v1v2 (latest)

Reactive Exploration to Cope with Non-Stationarity in Lifelong Reinforcement Learning

12 July 2022
C. Steinparz
Thomas Schmied
Fabian Paischer
Marius-Constantin Dinu
Vihang Patil
Angela Bitto-Nemling
Hamid Eghbalzadeh
Sepp Hochreiter
    CLL
ArXiv (abs)PDFHTMLGithub (14★)

Papers citing "Reactive Exploration to Cope with Non-Stationarity in Lifelong Reinforcement Learning"

50 / 62 papers shown
Title
Multimodal Deep Learning
Multimodal Deep Learning
Cem Akkus
Jiquan Ngiam
Vladana Djakovic
Steffen Jauch-Walser
A. Khosla
...
Jann Goschenhofer
Honglak Lee
A. Ng
Daniel Schalk
Matthias Aßenmacher
120
3,176
0
12 Jan 2023
History Compression via Language Models in Reinforcement Learning
History Compression via Language Models in Reinforcement Learning
Fabian Paischer
Thomas Adler
Vihang Patil
Angela Bitto-Nemling
Markus Holzleitner
Sebastian Lehner
Hamid Eghbalzadeh
Sepp Hochreiter
OffRLAI4TS
68
46
0
24 May 2022
Abstraction for Deep Reinforcement Learning
Abstraction for Deep Reinforcement Learning
Murray Shanahan
Melanie Mitchell
OffRL
86
27
0
10 Feb 2022
Lifelong Hyper-Policy Optimization with Multiple Importance Sampling
  Regularization
Lifelong Hyper-Policy Optimization with Multiple Importance Sampling Regularization
P. Liotet
Francesco Vidaich
Alberto Maria Metelli
Marcello Restelli
OffRL
49
8
0
13 Dec 2021
Bootstrapped Meta-Learning
Bootstrapped Meta-Learning
Sebastian Flennerhag
Yannick Schroecker
Tom Zahavy
Hado van Hasselt
David Silver
Satinder Singh
76
58
0
09 Sep 2021
Same State, Different Task: Continual Reinforcement Learning without
  Interference
Same State, Different Task: Continual Reinforcement Learning without Interference
Samuel Kessler
Jack Parker-Holder
Philip J. Ball
S. Zohren
Stephen J. Roberts
CLLOffRL
59
47
0
05 Jun 2021
Continual World: A Robotic Benchmark For Continual Reinforcement
  Learning
Continual World: A Robotic Benchmark For Continual Reinforcement Learning
Maciej Wołczyk
Michal Zajkac
Razvan Pascanu
Lukasz Kuciñski
Piotr Milo's
CLLOffRL
68
98
0
23 May 2021
Minimum-Delay Adaptation in Non-Stationary Reinforcement Learning via
  Online High-Confidence Change-Point Detection
Minimum-Delay Adaptation in Non-Stationary Reinforcement Learning via Online High-Confidence Change-Point Detection
L. N. Alegre
A. Bazzan
Bruno C. da Silva
OffRL
54
23
0
20 May 2021
A Simple Approach for Non-stationary Linear Bandits
A Simple Approach for Non-stationary Linear Bandits
Peng Zhao
Lijun Zhang
Yuan Jiang
Zhi Zhou
70
85
0
09 Mar 2021
Towards Continual Reinforcement Learning: A Review and Perspectives
Towards Continual Reinforcement Learning: A Review and Perspectives
Khimya Khetarpal
Matthew D Riemer
Irina Rish
Doina Precup
CLLOffRL
109
324
0
25 Dec 2020
Convergence Proof for Actor-Critic Methods Applied to PPO and RUDDER
Convergence Proof for Actor-Critic Methods Applied to PPO and RUDDER
Markus Holzleitner
Lukas Gruber
Jose A. Arjona-Medina
Johannes Brandstetter
Sepp Hochreiter
58
38
0
02 Dec 2020
Cross-Domain Few-Shot Learning by Representation Fusion
Cross-Domain Few-Shot Learning by Representation Fusion
Thomas Adler
Johannes Brandstetter
Michael Widrich
Andreas Mayr
David P. Kreil
Michael K Kopp
Günter Klambauer
Sepp Hochreiter
OOD
73
45
0
13 Oct 2020
Task Agnostic Continual Learning Using Online Variational Bayes with
  Fixed-Point Updates
Task Agnostic Continual Learning Using Online Variational Bayes with Fixed-Point Updates
Chen Zeno
Itay Golan
Elad Hoffer
Daniel Soudry
OODFedML
73
47
0
01 Oct 2020
Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution
Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution
Vihang Patil
M. Hofmarcher
Marius-Constantin Dinu
Matthias Dorfer
P. Blies
Johannes Brandstetter
Jose A. Arjona-Medina
Sepp Hochreiter
95
44
0
29 Sep 2020
La-MAML: Look-ahead Meta Learning for Continual Learning
La-MAML: Look-ahead Meta Learning for Continual Learning
Gunshi Gupta
Karmesh Yadav
Liam Paull
CLLVLM
86
69
0
27 Jul 2020
Supermasks in Superposition
Supermasks in Superposition
Mitchell Wortsman
Vivek Ramanujan
Rosanne Liu
Aniruddha Kembhavi
Mohammad Rastegari
J. Yosinski
Ali Farhadi
SSLCLL
88
296
0
26 Jun 2020
Reinforcement Learning for Non-Stationary Markov Decision Processes: The
  Blessing of (More) Optimism
Reinforcement Learning for Non-Stationary Markov Decision Processes: The Blessing of (More) Optimism
Wang Chi Cheung
D. Simchi-Levi
Ruihao Zhu
OffRL
73
96
0
24 Jun 2020
Continual Learning in Recurrent Neural Networks
Continual Learning in Recurrent Neural Networks
Benjamin Ehret
Christian Henning
Maria R. Cervera
Alexander Meulemans
J. Oswald
Benjamin Grewe
CLL
69
9
0
22 Jun 2020
Optimizing for the Future in Non-Stationary MDPs
Optimizing for the Future in Non-Stationary MDPs
Yash Chandak
Georgios Theocharous
Shiv Shankar
Martha White
Sridhar Mahadevan
Philip S. Thomas
OffRL
59
65
0
17 May 2020
RIDE: Rewarding Impact-Driven Exploration for Procedurally-Generated
  Environments
RIDE: Rewarding Impact-Driven Exploration for Procedurally-Generated Environments
Roberta Raileanu
Tim Rocktaschel
77
174
0
27 Feb 2020
Jelly Bean World: A Testbed for Never-Ending Learning
Jelly Bean World: A Testbed for Never-Ending Learning
Emmanouil Antonios Platanios
Abulhair Saparov
Tom Michael Mitchell
VLM
95
25
0
15 Feb 2020
Never Give Up: Learning Directed Exploration Strategies
Never Give Up: Learning Directed Exploration Strategies
Adria Puigdomenech Badia
Pablo Sprechmann
Alex Vitvitskyi
Daniel Guo
Bilal Piot
...
O. Tieleman
Martín Arjovsky
Alexander Pritzel
Andew Bolt
Charles Blundell
72
299
0
14 Feb 2020
Weighted Linear Bandits for Non-Stationary Environments
Weighted Linear Bandits for Non-Stationary Environments
Yoan Russac
Claire Vernade
Olivier Cappé
133
108
0
19 Sep 2019
Forward and Backward Knowledge Transfer for Sentiment Classification
Forward and Backward Knowledge Transfer for Sentiment Classification
Hao Wang
Bing-Quan Liu
Shuai Wang
Nianzu Ma
Yan Yang
CLL
54
18
0
08 Jun 2019
Neural Replicator Dynamics
Neural Replicator Dynamics
Daniel Hennes
Dustin Morrill
Shayegan Omidshafiei
Rémi Munos
Julien Perolat
...
A. Gruslys
Jean-Baptiste Lespiau
Paavo Parmas
Edgar A. Duénez-Guzmán
K. Tuyls
63
16
0
01 Jun 2019
Meta-Learning Representations for Continual Learning
Meta-Learning Representations for Continual Learning
Khurram Javed
Martha White
KELMCLL
80
320
0
29 May 2019
Reinforcement Learning in Non-Stationary Environments
Reinforcement Learning in Non-Stationary Environments
Sindhu Padakandla
J. PrabuchandranK.
S. Bhatnagar
OffRL
74
44
0
10 May 2019
Non-Stationary Markov Decision Processes, a Worst-Case Approach using
  Model-Based Reinforcement Learning, Extended version
Non-Stationary Markov Decision Processes, a Worst-Case Approach using Model-Based Reinforcement Learning, Extended version
Erwan Lecarpentier
Emmanuel Rachelson
91
85
0
22 Apr 2019
A Meta-MDP Approach to Exploration for Lifelong Reinforcement Learning
A Meta-MDP Approach to Exploration for Lifelong Reinforcement Learning
Francisco M. Garcia
Philip S. Thomas
88
41
0
03 Feb 2019
Go-Explore: a New Approach for Hard-Exploration Problems
Go-Explore: a New Approach for Hard-Exploration Problems
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
AI4TS
97
370
0
30 Jan 2019
Exploration by Random Network Distillation
Exploration by Random Network Distillation
Yuri Burda
Harrison Edwards
Amos Storkey
Oleg Klimov
161
1,345
0
30 Oct 2018
Memory Efficient Experience Replay for Streaming Learning
Memory Efficient Experience Replay for Streaming Learning
Tyler L. Hayes
N. Cahill
Christopher Kanan
70
233
0
16 Sep 2018
Count-Based Exploration with the Successor Representation
Count-Based Exploration with the Successor Representation
Marlos C. Machado
Marc G. Bellemare
Michael Bowling
46
188
0
31 Jul 2018
Continuous Learning in Single-Incremental-Task Scenarios
Continuous Learning in Single-Incremental-Task Scenarios
Davide Maltoni
Vincenzo Lomonaco
CLL
98
310
0
22 Jun 2018
RUDDER: Return Decomposition for Delayed Rewards
RUDDER: Return Decomposition for Delayed Rewards
Jose A. Arjona-Medina
Michael Gillhofer
Michael Widrich
Thomas Unterthiner
Johannes Brandstetter
Sepp Hochreiter
75
221
0
20 Jun 2018
Reinforced Continual Learning
Reinforced Continual Learning
Ju Xu
Zhanxing Zhu
CLL
97
377
0
31 May 2018
Lifelong Learning of Spatiotemporal Representations with Dual-Memory
  Recurrent Self-Organization
Lifelong Learning of Spatiotemporal Representations with Dual-Memory Recurrent Self-Organization
G. I. Parisi
Jun Tani
C. Weber
S. Wermter
CLL
50
130
0
28 May 2018
Learning Contextual Bandits in a Non-stationary Environment
Learning Contextual Bandits in a Non-stationary Environment
Qingyun Wu
Naveen Iyer
Hongning Wang
71
87
0
23 May 2018
Nearly Optimal Adaptive Procedure with Change Detection for
  Piecewise-Stationary Bandit
Nearly Optimal Adaptive Procedure with Change Detection for Piecewise-Stationary Bandit
Yang Cao
Zheng Wen
Branislav Kveton
Yao Xie
57
96
0
11 Feb 2018
Overcoming catastrophic forgetting with hard attention to the task
Overcoming catastrophic forgetting with hard attention to the task
Joan Serrà
Dídac Surís
M. Miron
Alexandros Karatzoglou
CLL
111
1,081
0
04 Jan 2018
PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning
PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning
Arun Mallya
Svetlana Lazebnik
CLL
107
1,308
0
15 Nov 2017
Taming Non-stationary Bandits: A Bayesian Approach
Taming Non-stationary Bandits: A Bayesian Approach
Vishnu Raj
Sheetal Kalyani
112
76
0
31 Jul 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
541
19,296
0
20 Jul 2017
Count-Based Exploration in Feature Space for Reinforcement Learning
Count-Based Exploration in Feature Space for Reinforcement Learning
Jarryd Martin
S. N. Sasikumar
Tom Everitt
Marcus Hutter
71
124
0
25 Jun 2017
Curiosity-driven Exploration by Self-supervised Prediction
Curiosity-driven Exploration by Self-supervised Prediction
Deepak Pathak
Pulkit Agrawal
Alexei A. Efros
Trevor Darrell
LRMSSL
125
2,451
0
15 May 2017
Overcoming Catastrophic Forgetting by Incremental Moment Matching
Overcoming Catastrophic Forgetting by Incremental Moment Matching
Sang-Woo Lee
Jin-Hwa Kim
Jaehyun Jun
Jung-Woo Ha
Byoung-Tak Zhang
CLL
72
679
0
24 Mar 2017
Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning
Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning
Joshua Achiam
S. Shankar Sastry
71
238
0
06 Mar 2017
Count-Based Exploration with Neural Density Models
Count-Based Exploration with Neural Density Models
Georg Ostrovski
Marc G. Bellemare
Aaron van den Oord
Rémi Munos
86
625
0
03 Mar 2017
Reinforcement Learning with Deep Energy-Based Policies
Reinforcement Learning with Deep Energy-Based Policies
Tuomas Haarnoja
Haoran Tang
Pieter Abbeel
Sergey Levine
115
1,348
0
27 Feb 2017
PathNet: Evolution Channels Gradient Descent in Super Neural Networks
PathNet: Evolution Channels Gradient Descent in Super Neural Networks
Chrisantha Fernando
Dylan Banarse
Charles Blundell
Yori Zwols
David R Ha
Andrei A. Rusu
Alexander Pritzel
Daan Wierstra
75
881
0
30 Jan 2017
12
Next