ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.03970
27
44

Reinforcement Learning in Non-Stationary Environments

10 May 2019
Sindhu Padakandla
J. PrabuchandranK.
S. Bhatnagar
    OffRL
ArXivPDFHTML
Abstract

Reinforcement learning (RL) methods learn optimal decisions in the presence of a stationary environment. However, the stationary assumption on the environment is very restrictive. In many real world problems like traffic signal control, robotic applications, one often encounters situations with non-stationary environments and in these scenarios, RL methods yield sub-optimal decisions. In this paper, we thus consider the problem of developing RL methods that obtain optimal decisions in a non-stationary environment. The goal of this problem is to maximize the long-term discounted reward achieved when the underlying model of the environment changes over time. To achieve this, we first adapt a change point algorithm to detect change in the statistics of the environment and then develop an RL algorithm that maximizes the long-run reward accrued. We illustrate that our change point method detects change in the model of the environment effectively and thus facilitates the RL algorithm in maximizing the long-run reward. We further validate the effectiveness of the proposed solution on non-stationary random Markov decision processes, a sensor energy management problem and a traffic signal control problem.

View on arXiv
Comments on this paper