ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.01603
  4. Cited By
Invariant and Transportable Representations for Anti-Causal Domain
  Shifts

Invariant and Transportable Representations for Anti-Causal Domain Shifts

4 July 2022
Yibo Jiang
Victor Veitch
    OOD
ArXivPDFHTML

Papers citing "Invariant and Transportable Representations for Anti-Causal Domain Shifts"

10 / 10 papers shown
Title
SSL Framework for Causal Inconsistency between Structures and Representations
SSL Framework for Causal Inconsistency between Structures and Representations
Hang Chen
Xinyu Yang
Keqing Du
Wenya Wang
52
2
0
03 Jan 2025
Rethinking Fair Representation Learning for Performance-Sensitive Tasks
Rethinking Fair Representation Learning for Performance-Sensitive Tasks
Charles Jones
Fabio De Sousa Ribeiro
Mélanie Roschewitz
Daniel Coelho De Castro
Ben Glocker
FaML
OOD
CML
146
1
0
05 Oct 2024
Differentially Private Bilevel Optimization
Differentially Private Bilevel Optimization
Guy Kornowski
142
0
0
29 Sep 2024
Data Augmentations for Improved (Large) Language Model Generalization
Data Augmentations for Improved (Large) Language Model Generalization
Amir Feder
Yoav Wald
Claudia Shi
S. Saria
David M. Blei
OOD
CML
32
7
0
19 Oct 2023
No Fair Lunch: A Causal Perspective on Dataset Bias in Machine Learning
  for Medical Imaging
No Fair Lunch: A Causal Perspective on Dataset Bias in Machine Learning for Medical Imaging
Charles Jones
Daniel Coelho De Castro
Fabio De Sousa Ribeiro
Ozan Oktay
Melissa McCradden
Ben Glocker
FaML
CML
44
9
0
31 Jul 2023
Mind the Label Shift of Augmentation-based Graph OOD Generalization
Mind the Label Shift of Augmentation-based Graph OOD Generalization
Junchi Yu
Jian Liang
Ran He
34
27
0
27 Mar 2023
Towards Out-Of-Distribution Generalization: A Survey
Towards Out-Of-Distribution Generalization: A Survey
Jiashuo Liu
Zheyan Shen
Yue He
Xingxuan Zhang
Renzhe Xu
Han Yu
Peng Cui
CML
OOD
55
517
0
31 Aug 2021
Gradient Matching for Domain Generalization
Gradient Matching for Domain Generalization
Yuge Shi
Jeffrey S. Seely
Philip H. S. Torr
Siddharth Narayanaswamy
Awni Y. Hannun
Nicolas Usunier
Gabriel Synnaeve
OOD
216
246
0
20 Apr 2021
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
313
0
07 Feb 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
338
11,684
0
09 Mar 2017
1