ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.01375
  4. Cited By
GraphVid: It Only Takes a Few Nodes to Understand a Video

GraphVid: It Only Takes a Few Nodes to Understand a Video

4 July 2022
Eitan Kosman
Dotan Di Castro
    GNN
ArXivPDFHTML

Papers citing "GraphVid: It Only Takes a Few Nodes to Understand a Video"

27 / 27 papers shown
Title
Video Swin Transformer
Video Swin Transformer
Ze Liu
Jia Ning
Yue Cao
Yixuan Wei
Zheng Zhang
Stephen Lin
Han Hu
ViT
100
1,482
0
24 Jun 2021
VidTr: Video Transformer Without Convolutions
VidTr: Video Transformer Without Convolutions
Yanyi Zhang
Xinyu Li
Chunhui Liu
Bing Shuai
Yi Zhu
Biagio Brattoli
Hao Chen
I. Marsic
Joseph Tighe
ViT
188
196
0
23 Apr 2021
Multiscale Vision Transformers
Multiscale Vision Transformers
Haoqi Fan
Bo Xiong
K. Mangalam
Yanghao Li
Zhicheng Yan
Jitendra Malik
Christoph Feichtenhofer
ViT
132
1,259
0
22 Apr 2021
VATT: Transformers for Multimodal Self-Supervised Learning from Raw
  Video, Audio and Text
VATT: Transformers for Multimodal Self-Supervised Learning from Raw Video, Audio and Text
Hassan Akbari
Liangzhe Yuan
Rui Qian
Wei-Hong Chuang
Shih-Fu Chang
Huayu Chen
Boqing Gong
ViT
314
589
0
22 Apr 2021
ViViT: A Video Vision Transformer
ViViT: A Video Vision Transformer
Anurag Arnab
Mostafa Dehghani
G. Heigold
Chen Sun
Mario Lucic
Cordelia Schmid
ViT
222
2,150
0
29 Mar 2021
Is Space-Time Attention All You Need for Video Understanding?
Is Space-Time Attention All You Need for Video Understanding?
Gedas Bertasius
Heng Wang
Lorenzo Torresani
ViT
367
2,053
0
09 Feb 2021
Video Transformer Network
Video Transformer Network
Daniel Neimark
Omri Bar
Maya Zohar
Dotan Asselmann
ViT
264
432
0
01 Feb 2021
Computing Graph Neural Networks: A Survey from Algorithms to
  Accelerators
Computing Graph Neural Networks: A Survey from Algorithms to Accelerators
S. Abadal
Akshay Jain
Robert Guirado
Jorge López-Alonso
Eduard Alarcón
GNN
109
228
0
30 Sep 2020
A Survey on Deep Learning Techniques for Video Anomaly Detection
A Survey on Deep Learning Techniques for Video Anomaly Detection
Jessie James P. Suarez
P. Naval
AI4TS
52
32
0
29 Sep 2020
Principal Neighbourhood Aggregation for Graph Nets
Principal Neighbourhood Aggregation for Graph Nets
Gabriele Corso
Luca Cavalleri
Dominique Beaini
Pietro Lio
Petar Velickovic
GNN
111
668
0
12 Apr 2020
X3D: Expanding Architectures for Efficient Video Recognition
X3D: Expanding Architectures for Efficient Video Recognition
Christoph Feichtenhofer
134
1,020
0
09 Apr 2020
DropEdge: Towards Deep Graph Convolutional Networks on Node
  Classification
DropEdge: Towards Deep Graph Convolutional Networks on Node Classification
Yu Rong
Wenbing Huang
Tingyang Xu
Junzhou Huang
110
1,339
0
25 Jul 2019
AssembleNet: Searching for Multi-Stream Neural Connectivity in Video
  Architectures
AssembleNet: Searching for Multi-Stream Neural Connectivity in Video Architectures
Michael S. Ryoo
A. Piergiovanni
Mingxing Tan
A. Angelova
52
102
0
30 May 2019
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond
Yue Cao
Jiarui Xu
Stephen Lin
Fangyun Wei
Han Hu
ISeg
80
1,571
0
25 Apr 2019
Fast Graph Representation Learning with PyTorch Geometric
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DH
GNN
3DPC
226
4,341
0
06 Mar 2019
SlowFast Networks for Video Recognition
SlowFast Networks for Video Recognition
Christoph Feichtenhofer
Haoqi Fan
Jitendra Malik
Kaiming He
164
3,274
0
10 Dec 2018
Video Action Transformer Network
Video Action Transformer Network
Rohit Girdhar
João Carreira
Carl Doersch
Andrew Zisserman
ViT
126
709
0
06 Dec 2018
Videos as Space-Time Region Graphs
Videos as Space-Time Region Graphs
Xinyu Wang
Abhinav Gupta
104
756
0
05 Jun 2018
Rethinking Spatiotemporal Feature Learning: Speed-Accuracy Trade-offs in
  Video Classification
Rethinking Spatiotemporal Feature Learning: Speed-Accuracy Trade-offs in Video Classification
Saining Xie
Chen Sun
Jonathan Huang
Zhuowen Tu
Kevin Patrick Murphy
3DH
142
1,330
0
13 Dec 2017
Network Representation Learning: A Survey
Network Representation Learning: A Survey
Daokun Zhang
Jie Yin
Xingquan Zhu
Chengqi Zhang
GNN
AI4TS
95
622
0
04 Dec 2017
Modeling Relational Data with Graph Convolutional Networks
Modeling Relational Data with Graph Convolutional Networks
Michael Schlichtkrull
Thomas Kipf
Peter Bloem
Rianne van den Berg
Ivan Titov
Max Welling
GNN
191
4,821
0
17 Mar 2017
Superpixels: An Evaluation of the State-of-the-Art
Superpixels: An Evaluation of the State-of-the-Art
David Stutz
Alexander Hermans
Bastian Leibe
SupR
124
471
0
06 Dec 2016
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
412
1,823
0
25 Nov 2016
Hollywood in Homes: Crowdsourcing Data Collection for Activity
  Understanding
Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding
Gunnar Sigurdsson
Gül Varol
Xinyu Wang
Ali Farhadi
Ivan Laptev
Abhinav Gupta
VGen
104
1,245
0
06 Apr 2016
Beyond Short Snippets: Deep Networks for Video Classification
Beyond Short Snippets: Deep Networks for Video Classification
Joe Yue-Hei Ng
Matthew J. Hausknecht
Sudheendra Vijayanarasimhan
Oriol Vinyals
R. Monga
G. Toderici
145
2,337
0
31 Mar 2015
Unsupervised Learning of Video Representations using LSTMs
Unsupervised Learning of Video Representations using LSTMs
Nitish Srivastava
Elman Mansimov
Ruslan Salakhutdinov
SSL
132
2,591
0
16 Feb 2015
Two-Stream Convolutional Networks for Action Recognition in Videos
Two-Stream Convolutional Networks for Action Recognition in Videos
Karen Simonyan
Andrew Zisserman
244
7,535
0
09 Jun 2014
1