ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.14973
  4. Cited By
Benchmarking the Robustness of Deep Neural Networks to Common
  Corruptions in Digital Pathology

Benchmarking the Robustness of Deep Neural Networks to Common Corruptions in Digital Pathology

30 June 2022
Yunlong Zhang
Yuxuan Sun
Honglin Li
S. Zheng
Chenglu Zhu
Ling Yang
    OOD
ArXivPDFHTML

Papers citing "Benchmarking the Robustness of Deep Neural Networks to Common Corruptions in Digital Pathology"

22 / 22 papers shown
Title
Are Transformers More Robust Than CNNs?
Are Transformers More Robust Than CNNs?
Yutong Bai
Jieru Mei
Alan Yuille
Cihang Xie
ViT
AAML
240
263
0
10 Nov 2021
Benchmarks for Corruption Invariant Person Re-identification
Benchmarks for Corruption Invariant Person Re-identification
Minghui Chen
Zhiqiang Wang
Feng Zheng
51
26
0
01 Nov 2021
When Human Pose Estimation Meets Robustness: Adversarial Algorithms and
  Benchmarks
When Human Pose Estimation Meets Robustness: Adversarial Algorithms and Benchmarks
Jiahang Wang
Sheng Jin
Wentao Liu
Weizhong Liu
Chao Qian
Ping Luo
AAML
52
58
0
13 May 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
441
21,418
0
25 Mar 2021
Learning domain-agnostic visual representation for computational
  pathology using medically-irrelevant style transfer augmentation
Learning domain-agnostic visual representation for computational pathology using medically-irrelevant style transfer augmentation
R. Yamashita
J. Long
Snikitha Banda
Jeanne Shen
D. Rubin
OOD
MedIm
34
50
0
02 Feb 2021
Training data-efficient image transformers & distillation through
  attention
Training data-efficient image transformers & distillation through attention
Hugo Touvron
Matthieu Cord
Matthijs Douze
Francisco Massa
Alexandre Sablayrolles
Hervé Jégou
ViT
377
6,762
0
23 Dec 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
637
41,003
0
22 Oct 2020
Benchmarking the Robustness of Semantic Segmentation Models
Benchmarking the Robustness of Semantic Segmentation Models
Christoph Kamann
Carsten Rother
VLM
UQCV
50
165
0
14 Aug 2019
Benchmarking Robustness in Object Detection: Autonomous Driving when
  Winter is Coming
Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming
Claudio Michaelis
Benjamin Mitzkus
Robert Geirhos
E. Rusak
Oliver Bringmann
Alexander S. Ecker
Matthias Bethge
Wieland Brendel
3DPC
95
445
0
17 Jul 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
137
18,115
0
28 May 2019
Benchmarking Neural Network Robustness to Common Corruptions and
  Perturbations
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
170
3,431
0
28 Mar 2019
ImageNet-trained CNNs are biased towards texture; increasing shape bias
  improves accuracy and robustness
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix Wichmann
Wieland Brendel
100
2,668
0
29 Nov 2018
Rotation Equivariant CNNs for Digital Pathology
Rotation Equivariant CNNs for Digital Pathology
Bastiaan S. Veeling
J. Linmans
Jim Winkens
Taco S. Cohen
Max Welling
109
583
0
08 Jun 2018
Why do deep convolutional networks generalize so poorly to small image
  transformations?
Why do deep convolutional networks generalize so poorly to small image transformations?
Aharon Azulay
Yair Weiss
70
560
0
30 May 2018
MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
178
19,271
0
13 Jan 2018
ShuffleNet: An Extremely Efficient Convolutional Neural Network for
  Mobile Devices
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
Xiangyu Zhang
Xinyu Zhou
Mengxiao Lin
Jian Sun
AI4TS
138
6,867
0
04 Jul 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,827
0
14 Jun 2017
Understanding How Image Quality Affects Deep Neural Networks
Understanding How Image Quality Affects Deep Neural Networks
Samuel F. Dodge
Lina Karam
VLM
65
729
0
14 Apr 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,878
0
10 Dec 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.8K
77,133
0
18 May 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.6K
100,348
0
04 Sep 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,918
1
21 Dec 2013
1