ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.14928
  4. Cited By
Manifold Interpolating Optimal-Transport Flows for Trajectory Inference
v1v2 (latest)

Manifold Interpolating Optimal-Transport Flows for Trajectory Inference

29 June 2022
G. Huguet
D. S. Magruder
Alexander Tong
O. Fasina
Manik Kuchroo
Guy Wolf
Smita Krishnaswamy
    OTDRL
ArXiv (abs)PDFHTML

Papers citing "Manifold Interpolating Optimal-Transport Flows for Trajectory Inference"

30 / 30 papers shown
Title
Using Linearized Optimal Transport to Predict the Evolution of Stochastic Particle Systems
Using Linearized Optimal Transport to Predict the Evolution of Stochastic Particle Systems
Nicholas Karris
Evangelos A. Nikitopoulos
Ioannis G. Kevrekidis
Seungjoon Lee
Alexander Cloninger
OT
110
0
0
10 Jan 2025
Tree-Wasserstein Distance for High Dimensional Data with a Latent Feature Hierarchy
Tree-Wasserstein Distance for High Dimensional Data with a Latent Feature Hierarchy
Ya-Wei Eileen Lin
Ronald R. Coifman
Zhengchao Wan
Ronen Talmon
169
3
0
28 Oct 2024
Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds
Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds
Xingzhi Sun
Danqi Liao
Kincaid MacDonald
Yanlei Zhang
Chen Liu
Guillaume Huguet
Guy Wolf
Ian M. Adelstein
Tim G. J. Rudner
Smita Krishnaswamy
85
6
0
16 Oct 2024
Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport
Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport
Zhenyi Zhang
Tiejun Li
Peijie Zhou
OT
199
11
0
01 Oct 2024
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Lazar Atanackovic
Xi Zhang
Brandon Amos
Mathieu Blanchette
Leo J. Lee
Yoshua Bengio
Alexander Tong
Kirill Neklyudov
146
12
0
26 Aug 2024
Efficient Trajectory Inference in Wasserstein Space Using Consecutive Averaging
Efficient Trajectory Inference in Wasserstein Space Using Consecutive Averaging
Amartya Banerjee
Harlin Lee
Nir Sharon
Caroline Moosmüller
75
1
0
30 May 2024
Neural Conservation Laws: A Divergence-Free Perspective
Neural Conservation Laws: A Divergence-Free Perspective
Jack Richter-Powell
Y. Lipman
Ricky T. Q. Chen
103
55
0
04 Oct 2022
Neural Lagrangian Schrödinger Bridge: Diffusion Modeling for
  Population Dynamics
Neural Lagrangian Schrödinger Bridge: Diffusion Modeling for Population Dynamics
Takeshi Koshizuka
Issei Sato
68
6
0
11 Apr 2022
Embedding Signals on Knowledge Graphs with Unbalanced Diffusion Earth
  Mover's Distance
Embedding Signals on Knowledge Graphs with Unbalanced Diffusion Earth Mover's Distance
Alexander Tong
G. Huguet
Dennis L. Shung
A. Natik
Manik Kuchroo
Guillaume Lajoie
Guy Wolf
Smita Krishnaswamy
40
6
0
26 Jul 2021
Deep Generative Learning via Schrödinger Bridge
Deep Generative Learning via Schrödinger Bridge
Gefei Wang
Yuling Jiao
Qiang Xu
Yang Wang
Can Yang
DiffMOT
64
102
0
19 Jun 2021
Proximal Optimal Transport Modeling of Population Dynamics
Proximal Optimal Transport Modeling of Population Dynamics
Charlotte Bunne
Laetitia Meng-Papaxanthos
Andreas Krause
Marco Cuturi
OT
70
92
0
11 Jun 2021
Solving Schrödinger Bridges via Maximum Likelihood
Solving Schrödinger Bridges via Maximum Likelihood
Francisco Vargas
Pierre Thodoroff
Neil D. Lawrence
A. Lamacraft
OT
62
144
0
03 Jun 2021
Diffusion Schrödinger Bridge with Applications to Score-Based
  Generative Modeling
Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling
Valentin De Bortoli
James Thornton
J. Heng
Arnaud Doucet
DiffMOT
104
467
0
01 Jun 2021
Diffusion Earth Mover's Distance and Distribution Embeddings
Diffusion Earth Mover's Distance and Distribution Embeddings
Alexander Tong
G. Huguet
A. Natik
Kincaid MacDonald
Manik Kuchroo
Ronald R. Coifman
Guy Wolf
Smita Krishnaswamy
MedIm
49
29
0
25 Feb 2021
Neural SDEs as Infinite-Dimensional GANs
Neural SDEs as Infinite-Dimensional GANs
Patrick Kidger
James Foster
Xuechen Li
Harald Oberhauser
Terry Lyons
DiffM
46
152
0
06 Feb 2021
Eigen-convergence of Gaussian kernelized graph Laplacian by manifold
  heat interpolation
Eigen-convergence of Gaussian kernelized graph Laplacian by manifold heat interpolation
Xiuyuan Cheng
Nan Wu
90
29
0
25 Jan 2021
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffMSyDa
341
6,480
0
26 Nov 2020
Optimal Transport using GANs for Lineage Tracing
Optimal Transport using GANs for Lineage Tracing
Neha Prasad
Karren D. Yang
Caroline Uhler
OT
18
12
0
23 Jul 2020
Extendable and invertible manifold learning with geometry regularized
  autoencoders
Extendable and invertible manifold learning with geometry regularized autoencoders
Andres F. Duque
Sacha Morin
Guy Wolf
Kevin R. Moon
78
25
0
14 Jul 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
645
18,096
0
19 Jun 2020
Riemannian Continuous Normalizing Flows
Riemannian Continuous Normalizing Flows
Emile Mathieu
Maximilian Nickel
AI4CE
94
126
0
18 Jun 2020
TrajectoryNet: A Dynamic Optimal Transport Network for Modeling Cellular
  Dynamics
TrajectoryNet: A Dynamic Optimal Transport Network for Modeling Cellular Dynamics
Alexander Tong
Jessie Huang
Guy Wolf
David van Dijk
Smita Krishnaswamy
64
171
0
09 Feb 2020
How to train your neural ODE: the world of Jacobian and kinetic
  regularization
How to train your neural ODE: the world of Jacobian and kinetic regularization
Chris Finlay
J. Jacobsen
L. Nurbekyan
Adam M. Oberman
59
301
0
07 Feb 2020
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDaDiffM
258
3,916
0
12 Jul 2019
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
  Models
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
150
873
0
02 Oct 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
417
5,111
0
19 Jun 2018
Computational Optimal Transport
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
222
2,148
0
01 Mar 2018
Diffusion Nets
Diffusion Nets
Zhengchao Wan
Uri Shaham
Alexander Cloninger
Israel Cohen
DiffM
50
54
0
25 Jun 2015
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
215
4,277
0
04 Jun 2013
A Kernel Method for the Two-Sample Problem
A Kernel Method for the Two-Sample Problem
Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alex Smola
231
2,363
0
15 May 2008
1