ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.14331
  4. Cited By
Spherical Channels for Modeling Atomic Interactions
v1v2 (latest)

Spherical Channels for Modeling Atomic Interactions

29 June 2022
C. L. Zitnick
Abhishek Das
Adeesh Kolluru
Janice Lan
Muhammed Shuaibi
Anuroop Sriram
Zachary W. Ulissi
Brandon M. Wood
ArXiv (abs)PDFHTML

Papers citing "Spherical Channels for Modeling Atomic Interactions"

33 / 33 papers shown
Title
Equivariant Masked Position Prediction for Efficient Molecular Representation
Equivariant Masked Position Prediction for Efficient Molecular Representation
Junyi An
Chao Qu
Yun-Fei Shi
XinHao Liu
Qianwei Tang
Fenglei Cao
Yuan Qi
78
0
0
12 Feb 2025
Learning local equivariant representations for quantum operators
Learning local equivariant representations for quantum operators
Zhanghao Zhouyin
Zixi Gan
MingKang Liu
S. K. Pandey
Linfeng Zhang
Qiangqiang Gu
165
4
0
28 Jan 2025
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Jiaqi Han
Jiacheng Cen
Liming Wu
Zongzhao Li
Xiangzhe Kong
...
Zhewei Wei
Deli Zhao
Yu Rong
Wenbing Huang
Wenbing Huang
AI4CE
128
23
0
01 Mar 2024
The Design Space of E(3)-Equivariant Atom-Centered Interatomic
  Potentials
The Design Space of E(3)-Equivariant Atom-Centered Interatomic Potentials
Ilyes Batatia
Simon L. Batzner
D. P. Kovács
Albert Musaelian
G. Simm
R. Drautz
Christoph Ortner
Boris Kozinsky
Gábor Csányi
74
152
0
13 May 2022
GemNet-OC: Developing Graph Neural Networks for Large and Diverse
  Molecular Simulation Datasets
GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets
Johannes Gasteiger
Muhammed Shuaibi
Anuroop Sriram
Stephan Günnemann
Zachary W. Ulissi
C. L. Zitnick
Abhishek Das
AI4TSMLAU
83
68
0
06 Apr 2022
Geometric and Physical Quantities Improve E(3) Equivariant Message
  Passing
Geometric and Physical Quantities Improve E(3) Equivariant Message Passing
Johannes Brandstetter
Rob D. Hesselink
Elise van der Pol
Erik J. Bekkers
Max Welling
88
242
0
06 Oct 2021
Rotation Invariant Graph Neural Networks using Spin Convolutions
Rotation Invariant Graph Neural Networks using Spin Convolutions
Muhammed Shuaibi
Adeesh Kolluru
Abhishek Das
Aditya Grover
Anuroop Sriram
Zachary W. Ulissi
C. L. Zitnick
AI4CE
79
69
0
17 Jun 2021
Simple GNN Regularisation for 3D Molecular Property Prediction & Beyond
Simple GNN Regularisation for 3D Molecular Property Prediction & Beyond
Jonathan Godwin
Michael Schaarschmidt
Alex Gaunt
Alvaro Sanchez-Gonzalez
Yulia Rubanova
Petar Velivcković
J. Kirkpatrick
Peter W. Battaglia
89
60
0
15 Jun 2021
Do Transformers Really Perform Bad for Graph Representation?
Do Transformers Really Perform Bad for Graph Representation?
Chengxuan Ying
Tianle Cai
Shengjie Luo
Shuxin Zheng
Guolin Ke
Di He
Yanming Shen
Tie-Yan Liu
GNN
95
441
0
09 Jun 2021
GemNet: Universal Directional Graph Neural Networks for Molecules
GemNet: Universal Directional Graph Neural Networks for Molecules
Johannes Klicpera
Florian Becker
Stephan Günnemann
AI4CE
97
459
0
02 Jun 2021
ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations
ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations
Weihua Hu
Muhammed Shuaibi
Abhishek Das
Siddharth Goyal
Anuroop Sriram
J. Leskovec
Devi Parikh
C. L. Zitnick
GNNAI4CE
79
70
0
02 Mar 2021
E(n) Equivariant Graph Neural Networks
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
111
1,020
0
19 Feb 2021
Spherical Message Passing for 3D Graph Networks
Spherical Message Passing for 3D Graph Networks
Yi Liu
Limei Wang
Meng Liu
Xuan Zhang
Bora Oztekin
Shuiwang Ji
GNN
61
201
0
09 Feb 2021
Equivariant message passing for the prediction of tensorial properties
  and molecular spectra
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
110
534
0
05 Feb 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
300
1,298
0
08 Jan 2021
Fast and Uncertainty-Aware Directional Message Passing for
  Non-Equilibrium Molecules
Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules
Johannes Klicpera
Shankari Giri
Johannes T. Margraf
Stephan Günnemann
79
323
0
28 Nov 2020
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
...
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
260
527
0
20 Oct 2020
An Introduction to Electrocatalyst Design using Machine Learning for
  Renewable Energy Storage
An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Storage
C. L. Zitnick
L. Chanussot
Abhishek Das
Siddharth Goyal
Javier Heras-Domingo
...
Kevin Tran
Brandon M. Wood
Junwoong Yoon
Devi Parikh
Zachary W. Ulissi
61
74
0
14 Oct 2020
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
  Atomic-Orbital Features
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features
Zhuoran Qiao
Matthew Welborn
Anima Anandkumar
F. Manby
Thomas F. Miller
AI4CE
70
217
0
15 Jul 2020
Directional Message Passing for Molecular Graphs
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
124
875
0
06 Mar 2020
Tackling Climate Change with Machine Learning
Tackling Climate Change with Machine Learning
David Rolnick
P. Donti
L. Kaack
K. Kochanski
Alexandre Lacoste
...
Demis Hassabis
John C. Platt
F. Creutzig
J. Chayes
Yoshua Bengio
AI4ClAI4CE
76
804
0
10 Jun 2019
Cormorant: Covariant Molecular Neural Networks
Cormorant: Covariant Molecular Neural Networks
Brandon M. Anderson
Truong-Son Hy
Risi Kondor
99
425
0
06 Jun 2019
Graph Neural Networks: A Review of Methods and Applications
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Ganqu Cui
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CEGNN
1.1K
5,517
0
20 Dec 2018
3D Steerable CNNs: Learning Rotationally Equivariant Features in
  Volumetric Data
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
Maurice Weiler
Mario Geiger
Max Welling
Wouter Boomsma
Taco S. Cohen
3DPC
110
505
0
06 Jul 2018
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional
  Neural Network
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
Risi Kondor
Zhen Lin
Shubhendu Trivedi
79
271
0
24 Jun 2018
Neural Message Passing with Edge Updates for Predicting Properties of
  Molecules and Materials
Neural Message Passing with Edge Updates for Predicting Properties of Molecules and Materials
Peter Bjørn Jørgensen
K. Jacobsen
Mikkel N. Schmidt
56
82
0
08 Jun 2018
Tensor field networks: Rotation- and translation-equivariant neural
  networks for 3D point clouds
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
95
973
0
22 Feb 2018
Spherical CNNs
Spherical CNNs
Taco S. Cohen
Mario Geiger
Jonas Köhler
Max Welling
158
904
0
30 Jan 2018
Learning Steerable Filters for Rotation Equivariant CNNs
Learning Steerable Filters for Rotation Equivariant CNNs
Maurice Weiler
Fred Hamprecht
M. Storath
92
388
0
20 Nov 2017
Learning SO(3) Equivariant Representations with Spherical CNNs
Learning SO(3) Equivariant Representations with Spherical CNNs
Carlos Esteves
Christine Allen-Blanchette
A. Makadia
Kostas Daniilidis
104
515
0
17 Nov 2017
SchNet: A continuous-filter convolutional neural network for modeling
  quantum interactions
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
155
1,076
0
26 Jun 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
593
7,455
0
04 Apr 2017
Gaussian Error Linear Units (GELUs)
Gaussian Error Linear Units (GELUs)
Dan Hendrycks
Kevin Gimpel
172
5,011
0
27 Jun 2016
1