ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.11959
  4. Cited By
Similarity-aware Positive Instance Sampling for Graph Contrastive
  Pre-training

Similarity-aware Positive Instance Sampling for Graph Contrastive Pre-training

23 June 2022
Xueyi Liu
Yu Rong
Tingyang Xu
Gang Hua
Wen-bing Huang
Junzhou Huang
ArXiv (abs)PDFHTML

Papers citing "Similarity-aware Positive Instance Sampling for Graph Contrastive Pre-training"

19 / 19 papers shown
Title
TUDataset: A collection of benchmark datasets for learning with graphs
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
239
827
0
16 Jul 2020
Self-Supervised Graph Transformer on Large-Scale Molecular Data
Self-Supervised Graph Transformer on Large-Scale Molecular Data
Yu Rong
Yatao Bian
Tingyang Xu
Wei-yang Xie
Ying Wei
Wenbing Huang
Junzhou Huang
AI4CE
134
25
0
18 Jun 2020
Contrastive Multi-View Representation Learning on Graphs
Contrastive Multi-View Representation Learning on Graphs
Kaveh Hassani
Amir Hosein Khas Ahmadi
SSL
232
1,305
0
10 Jun 2020
Supervised Contrastive Learning
Supervised Contrastive Learning
Prannay Khosla
Piotr Teterwak
Chen Wang
Aaron Sarna
Yonglong Tian
Phillip Isola
Aaron Maschinot
Ce Liu
Dilip Krishnan
SSL
165
4,572
0
23 Apr 2020
Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning
Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross B. Girshick
SSL
210
12,124
0
13 Nov 2019
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph
  Neural Networks
Deep Graph Library: A Graph-Centric, Highly-Performant Package for Graph Neural Networks
Minjie Wang
Da Zheng
Zihao Ye
Quan Gan
Mufei Li
...
Jiaqi Zhao
Haotong Zhang
Alex Smola
Jinyang Li
Zheng Zhang
AI4CEGNN
286
759
0
03 Sep 2019
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation
  Learning via Mutual Information Maximization
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization
Fan-Yun Sun
Jordan Hoffmann
Vikas Verma
Jian Tang
SSL
156
864
0
31 Jul 2019
NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization
NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization
J. Qiu
Yuxiao Dong
Hao Ma
Jun Yu Li
Chi Wang
Kuansan Wang
Jie Tang
54
173
0
26 Jun 2019
Strategies for Pre-training Graph Neural Networks
Strategies for Pre-training Graph Neural Networks
Weihua Hu
Bowen Liu
Joseph Gomes
Marinka Zitnik
Percy Liang
Vijay S. Pande
J. Leskovec
SSLAI4CE
116
1,415
0
29 May 2019
Fast Graph Representation Learning with PyTorch Geometric
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DHGNN3DPC
237
4,364
0
06 Mar 2019
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
251
7,695
0
01 Oct 2018
GraKeL: A Graph Kernel Library in Python
GraKeL: A Graph Kernel Library in Python
Giannis Siglidis
Giannis Nikolentzos
Stratis Limnios
C. Giatsidis
Konstantinos Skianis
Michalis Vazirgiannis
GP
38
158
0
06 Jun 2018
Population Based Training of Neural Networks
Population Based Training of Neural Networks
Max Jaderberg
Valentin Dalibard
Simon Osindero
Wojciech M. Czarnecki
Jeff Donahue
...
Tim Green
Iain Dunning
Karen Simonyan
Chrisantha Fernando
Koray Kavukcuoglu
93
744
0
27 Nov 2017
graph2vec: Learning Distributed Representations of Graphs
graph2vec: Learning Distributed Representations of Graphs
A. Narayanan
Mahinthan Chandramohan
R. Venkatesan
Lihui Chen
Yang Liu
Shantanu Jaiswal
GNN
71
744
0
17 Jul 2017
Inductive Representation Learning on Large Graphs
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
514
15,319
0
07 Jun 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
598
7,488
0
04 Apr 2017
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
337
1,837
0
02 Mar 2017
node2vec: Scalable Feature Learning for Networks
node2vec: Scalable Feature Learning for Networks
Aditya Grover
J. Leskovec
191
10,906
0
03 Jul 2016
DeepWalk: Online Learning of Social Representations
DeepWalk: Online Learning of Social Representations
Bryan Perozzi
Rami Al-Rfou
Steven Skiena
HAI
263
9,800
0
26 Mar 2014
1