Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.10469
Cited By
v1
v2 (latest)
The Privacy Onion Effect: Memorization is Relative
21 June 2022
Nicholas Carlini
Matthew Jagielski
Chiyuan Zhang
Nicolas Papernot
Andreas Terzis
Florian Tramèr
PILM
MIACV
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The Privacy Onion Effect: Memorization is Relative"
32 / 82 papers shown
Title
MACE: Mass Concept Erasure in Diffusion Models
Shilin Lu
Zilan Wang
Leyang Li
Yanzhu Liu
A. Kong
DiffM
94
93
0
10 Mar 2024
Inexact Unlearning Needs More Careful Evaluations to Avoid a False Sense of Privacy
Jamie Hayes
Ilia Shumailov
Eleni Triantafillou
Amr Khalifa
Nicolas Papernot
MU
94
38
0
02 Mar 2024
Copyright Traps for Large Language Models
Matthieu Meeus
Igor Shilov
Manuel Faysse
Yves-Alexandre de Montjoye
117
22
0
14 Feb 2024
FinLLMs: A Framework for Financial Reasoning Dataset Generation with Large Language Models
Ziqiang Yuan
Kaiyuan Wang
Shoutai Zhu
Ye Yuan
Jingya Zhou
Yanlin Zhu
Wenqi Wei
80
9
0
19 Jan 2024
Memorization in Self-Supervised Learning Improves Downstream Generalization
Wenhao Wang
Muhammad Ahmad Kaleem
Adam Dziedzic
Michael Backes
Nicolas Papernot
Franziska Boenisch
SSL
83
11
0
19 Jan 2024
Traces of Memorisation in Large Language Models for Code
Ali Al-Kaswan
Maliheh Izadi
Arie van Deursen
ELM
62
17
0
18 Dec 2023
SoK: Unintended Interactions among Machine Learning Defenses and Risks
Vasisht Duddu
S. Szyller
Nadarajah Asokan
AAML
169
2
0
07 Dec 2023
Receler: Reliable Concept Erasing of Text-to-Image Diffusion Models via Lightweight Erasers
Chi-Pin Huang
Kai-Po Chang
Chung-Ting Tsai
Yung-Hsuan Lai
Fu-En Yang
Yu-Chiang Frank Wang
DiffM
107
56
0
29 Nov 2023
SoK: Memorisation in machine learning
Dmitrii Usynin
Moritz Knolle
Georgios Kaissis
107
1
0
06 Nov 2023
MIST: Defending Against Membership Inference Attacks Through Membership-Invariant Subspace Training
Jiacheng Li
Ninghui Li
Bruno Ribeiro
109
4
0
02 Nov 2023
Fundamental Limits of Membership Inference Attacks on Machine Learning Models
Eric Aubinais
Elisabeth Gassiat
Pablo Piantanida
MIACV
175
2
0
20 Oct 2023
Generation or Replication: Auscultating Audio Latent Diffusion Models
Dimitrios Bralios
Gordon Wichern
François Germain
Zexu Pan
Sameer Khurana
Chiori Hori
Jonathan Le Roux
DiffM
67
6
0
16 Oct 2023
Why Train More? Effective and Efficient Membership Inference via Memorization
Jihye Choi
Shruti Tople
Varun Chandrasekaran
Somesh Jha
TDI
FedML
100
2
0
12 Oct 2023
Unified Concept Editing in Diffusion Models
Rohit Gandikota
Hadas Orgad
Yonatan Belinkov
Joanna Materzyñska
David Bau
DiffM
110
192
0
25 Aug 2023
Machine Unlearning: Solutions and Challenges
Jie Xu
Zihan Wu
Cong Wang
Xiaohua Jia
MU
165
57
0
14 Aug 2023
What can we learn from Data Leakage and Unlearning for Law?
Jaydeep Borkar
PILM
MU
119
11
0
19 Jul 2023
Gradients Look Alike: Sensitivity is Often Overestimated in DP-SGD
Anvith Thudi
Hengrui Jia
Casey Meehan
Ilia Shumailov
Nicolas Papernot
128
7
0
01 Jul 2023
Ticketed Learning-Unlearning Schemes
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Ayush Sekhari
Chiyuan Zhang
MU
86
9
0
27 Jun 2023
Achilles' Heels: Vulnerable Record Identification in Synthetic Data Publishing
Matthieu Meeus
Florent Guépin
Ana-Maria Cretu
Yves-Alexandre de Montjoye
179
24
0
17 Jun 2023
Collaborative Learning via Prediction Consensus
Dongyang Fan
Celestine Mendler-Dünner
Martin Jaggi
FedML
93
9
0
29 May 2023
Membership Inference Attacks against Language Models via Neighbourhood Comparison
Justus Mattern
Fatemehsadat Mireshghallah
Zhijing Jin
Bernhard Schölkopf
Mrinmaya Sachan
Taylor Berg-Kirkpatrick
MIALM
121
191
0
29 May 2023
Students Parrot Their Teachers: Membership Inference on Model Distillation
Matthew Jagielski
Milad Nasr
Christopher A. Choquette-Choo
Katherine Lee
Nicholas Carlini
FedML
73
23
0
06 Mar 2023
Understanding Reconstruction Attacks with the Neural Tangent Kernel and Dataset Distillation
Noel Loo
Ramin Hasani
Mathias Lechner
Alexander Amini
Daniela Rus
DD
95
7
0
02 Feb 2023
Hidden Poison: Machine Unlearning Enables Camouflaged Poisoning Attacks
Jimmy Z. Di
Jack Douglas
Jayadev Acharya
Gautam Kamath
Ayush Sekhari
MU
81
47
0
21 Dec 2022
How Does a Deep Learning Model Architecture Impact Its Privacy? A Comprehensive Study of Privacy Attacks on CNNs and Transformers
Guangsheng Zhang
B. Liu
Huan Tian
Tianqing Zhu
Ming Ding
Wanlei Zhou
PILM
MIACV
92
6
0
20 Oct 2022
Canary in a Coalmine: Better Membership Inference with Ensembled Adversarial Queries
Yuxin Wen
Arpit Bansal
Hamid Kazemi
Eitan Borgnia
Micah Goldblum
Jonas Geiping
Tom Goldstein
MIACV
122
32
0
19 Oct 2022
Deep Regression Unlearning
Ayush K Tarun
Vikram S Chundawat
Murari Mandal
Mohan S. Kankanhalli
BDL
MU
67
36
0
15 Oct 2022
Knowledge Unlearning for Mitigating Privacy Risks in Language Models
Joel Jang
Dongkeun Yoon
Sohee Yang
Sungmin Cha
Moontae Lee
Lajanugen Logeswaran
Minjoon Seo
KELM
PILM
MU
226
239
0
04 Oct 2022
Data Isotopes for Data Provenance in DNNs
Emily Wenger
Xiuyu Li
Ben Y. Zhao
Vitaly Shmatikov
71
12
0
29 Aug 2022
Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent
Da Yu
Gautam Kamath
Janardhan Kulkarni
Tie-Yan Liu
Jian Yin
Huishuai Zhang
158
22
0
06 Jun 2022
SHAPr: An Efficient and Versatile Membership Privacy Risk Metric for Machine Learning
Vasisht Duddu
S. Szyller
Nadarajah Asokan
76
13
0
04 Dec 2021
What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation
Vitaly Feldman
Chiyuan Zhang
TDI
248
472
0
09 Aug 2020
Previous
1
2