ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2311.17717
11
48

Receler: Reliable Concept Erasing of Text-to-Image Diffusion Models via Lightweight Erasers

29 November 2023
Chi-Pin Huang
Kai-Po Chang
Chung-Ting Tsai
Yung-Hsuan Lai
Fu-En Yang
Yu-Chiang Frank Wang
    DiffM
ArXivPDFHTML
Abstract

Concept erasure in text-to-image diffusion models aims to disable pre-trained diffusion models from generating images related to a target concept. To perform reliable concept erasure, the properties of robustness and locality are desirable. The former refrains the model from producing images associated with the target concept for any paraphrased or learned prompts, while the latter preserves its ability in generating images with non-target concepts. In this paper, we propose Reliable Concept Erasing via Lightweight Erasers (Receler). It learns a lightweight Eraser to perform concept erasing while satisfying the above desirable properties through the proposed concept-localized regularization and adversarial prompt learning scheme. Experiments with various concepts verify the superiority of Receler over previous methods.

View on arXiv
Comments on this paper