Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.10044
Cited By
Identifiability of deep generative models without auxiliary information
20 June 2022
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Identifiability of deep generative models without auxiliary information"
43 / 43 papers shown
Title
Robustness of Nonlinear Representation Learning
Simon Buchholz
Bernhard Schölkopf
OOD
137
3
0
19 Mar 2025
Transfer Learning in Latent Contextual Bandits with Covariate Shift Through Causal Transportability
Mingwei Deng
Ville Kyrki
Dominik Baumann
36
0
0
27 Feb 2025
Identifiability Guarantees for Causal Disentanglement from Purely Observational Data
Ryan Welch
Jiaqi Zhang
Caroline Uhler
CML
OOD
51
1
0
31 Oct 2024
Language Agents Meet Causality -- Bridging LLMs and Causal World Models
John Gkountouras
Matthias Lindemann
Phillip Lippe
E. Gavves
Ivan Titov
LRM
28
0
0
25 Oct 2024
Causal Representation Learning in Temporal Data via Single-Parent Decoding
Philippe Brouillard
Sébastien Lachapelle
Julia Kaltenborn
Yaniv Gurwicz
Dhanya Sridhar
Alexandre Drouin
Peer Nowack
Jakob Runge
David Rolnick
CML
32
3
0
09 Oct 2024
Controlling for discrete unmeasured confounding in nonlinear causal models
Patrick Burauel
Frederick Eberhardt
Michel Besserve
CML
23
0
0
10 Aug 2024
Identifiable Object-Centric Representation Learning via Probabilistic Slot Attention
Avinash Kori
Francesco Locatello
Ainkaran Santhirasekaram
Francesca Toni
Ben Glocker
Fabio De Sousa Ribeiro
OCL
45
1
0
11 Jun 2024
Learning Discrete Concepts in Latent Hierarchical Models
Lingjing Kong
Guan-Hong Chen
Biwei Huang
Eric P. Xing
Yuejie Chi
Kun Zhang
52
4
0
01 Jun 2024
Marrying Causal Representation Learning with Dynamical Systems for Science
Dingling Yao
Caroline Muller
Francesco Locatello
CML
AI4CE
40
6
0
22 May 2024
Distributional Principal Autoencoders
Xinwei Shen
N. Meinshausen
21
2
0
21 Apr 2024
Non-negative Contrastive Learning
Yifei Wang
Qi Zhang
Yaoyu Guo
Yisen Wang
26
9
0
19 Mar 2024
A Sparsity Principle for Partially Observable Causal Representation Learning
Danru Xu
Dingling Yao
Sébastien Lachapelle
Perouz Taslakian
Julius von Kügelgen
Francesco Locatello
Sara Magliacane
CML
37
13
0
13 Mar 2024
On the Origins of Linear Representations in Large Language Models
Yibo Jiang
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
Victor Veitch
61
24
0
06 Mar 2024
Separating common from salient patterns with Contrastive Representation Learning
Robin Louiset
Edouard Duchesnay
Antoine Grigis
Pietro Gori
SSL
DRL
38
1
0
19 Feb 2024
Learning Interpretable Concepts: Unifying Causal Representation Learning and Foundation Models
Goutham Rajendran
Simon Buchholz
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
AI4CE
91
21
0
14 Feb 2024
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
38
2
0
19 Dec 2023
Learning Unknown Intervention Targets in Structural Causal Models from Heterogeneous Data
Yuqin Yang
Saber Salehkaleybar
Negar Kiyavash
CML
20
1
0
11 Dec 2023
Multi-View Causal Representation Learning with Partial Observability
Dingling Yao
Danru Xu
Sébastien Lachapelle
Sara Magliacane
Perouz Taslakian
Georg Martius
Julius von Kügelgen
Francesco Locatello
CML
42
30
0
07 Nov 2023
Generalizing Nonlinear ICA Beyond Structural Sparsity
Yujia Zheng
Kun Zhang
CML
21
16
0
01 Nov 2023
Causal Representation Learning Made Identifiable by Grouping of Observational Variables
H. Morioka
Aapo Hyvarinen
OOD
CML
BDL
30
9
0
24 Oct 2023
Identifying Representations for Intervention Extrapolation
Sorawit Saengkyongam
Ezgi Ozyilkan
Pradeep Ravikumar
Niklas Pfister
Jonas Peters
CML
OOD
16
14
0
06 Oct 2023
Multi-Domain Causal Representation Learning via Weak Distributional Invariances
Kartik Ahuja
Amin Mansouri
Yixin Wang
CML
OOD
21
10
0
04 Oct 2023
Learning multi-modal generative models with permutation-invariant encoders and tighter variational bounds
Marcel Hirt
Domenico Campolo
Victoria Leong
Juan-Pablo Ortega
DRL
8
0
0
01 Sep 2023
Beyond Convergence: Identifiability of Machine Learning and Deep Learning Models
Reza Sameni
19
1
0
21 Jul 2023
A Causal Ordering Prior for Unsupervised Representation Learning
Avinash Kori
Pedro Sanchez
Konstantinos Vilouras
Ben Glocker
Sotirios A. Tsaftaris
BDL
SSL
CML
32
0
0
11 Jul 2023
On the Identifiability of Quantized Factors
Vitória Barin Pacela
Kartik Ahuja
Simon Lacoste-Julien
Pascal Vincent
OOD
CML
21
1
0
28 Jun 2023
Leveraging Task Structures for Improved Identifiability in Neural Network Representations
Wenlin Chen
Julien Horwood
Juyeon Heo
José Miguel Hernández-Lobato
CML
30
1
0
26 Jun 2023
Learning Linear Causal Representations from Interventions under General Nonlinear Mixing
Simon Buchholz
Goutham Rajendran
Elan Rosenfeld
Bryon Aragam
Bernhard Schölkopf
Pradeep Ravikumar
CML
34
57
0
04 Jun 2023
Nonparametric Identifiability of Causal Representations from Unknown Interventions
Julius von Kügelgen
M. Besserve
Wendong Liang
Luigi Gresele
Armin Kekić
Elias Bareinboim
David M. Blei
Bernhard Schölkopf
CML
18
56
0
01 Jun 2023
Neuro-Causal Factor Analysis
Alex Markham
Ming-Yu Liu
Bryon Aragam
Liam Solus
CML
23
3
0
31 May 2023
Disentanglement via Latent Quantization
Kyle Hsu
W. Dorrell
James C. R. Whittington
Jiajun Wu
Chelsea Finn
DRL
23
24
0
28 May 2023
Causal Component Analysis
Wendong Liang
Armin Kekić
Julius von Kügelgen
Simon Buchholz
M. Besserve
Luigi Gresele
Bernhard Schölkopf
CML
29
36
0
26 May 2023
On the Identifiability of Switching Dynamical Systems
Carles Balsells-Rodas
Yixin Wang
Yingzhen Li
32
4
0
25 May 2023
Manifold Learning by Mixture Models of VAEs for Inverse Problems
Giovanni S. Alberti
J. Hertrich
Matteo Santacesaria
Silvia Sciutto
DRL
29
6
0
27 Mar 2023
Causally Disentangled Generative Variational AutoEncoder
SeungHwan An
Kyungwoo Song
Jong-June Jeon
OOD
CoGe
DRL
CML
19
4
0
23 Feb 2023
Generative Causal Representation Learning for Out-of-Distribution Motion Forecasting
Shayan Shirahmad Gale Bagi
Zahra Gharaee
Oliver Schulte
Mark Crowley
OODD
OOD
21
12
0
17 Feb 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Biwei Huang
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
50
11
0
29 Jan 2023
Posterior Collapse and Latent Variable Non-identifiability
Yixin Wang
David M. Blei
John P. Cunningham
CML
DRL
83
71
0
02 Jan 2023
Generalized Identifiability Bounds for Mixture Models with Grouped Samples
Robert A. Vandermeulen
René Saitenmacher
20
2
0
22 Jul 2022
Tight Bounds on the Hardness of Learning Simple Nonparametric Mixtures
Bryon Aragam
W. Tai
17
3
0
28 Mar 2022
Uniform Consistency in Nonparametric Mixture Models
Bryon Aragam
Ruiyi Yang
18
6
0
31 Aug 2021
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
238
207
0
17 Feb 2021
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
175
313
0
07 Feb 2020
1