ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.08917
  4. Cited By
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide
  Electrocatalysts

The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts

17 June 2022
Richard Tran
Janice Lan
Muhammed Shuaibi
Brandon M. Wood
Siddharth Goyal
Abhishek Das
Javier Heras-Domingo
Adeesh Kolluru
Ammar Rizvi
Nima Shoghi
Anuroop Sriram
Felix Therrien
Jehad Abed
Oleksandr Voznyy
Edward H. Sargent
Zachary W. Ulissi
C. L. Zitnick
ArXivPDFHTML

Papers citing "The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts"

48 / 48 papers shown
Title
Understanding the Capabilities of Molecular Graph Neural Networks in Materials Science Through Multimodal Learning and Physical Context Encoding
Understanding the Capabilities of Molecular Graph Neural Networks in Materials Science Through Multimodal Learning and Physical Context Encoding
Can Polat
Hasan Kurban
Erchin Serpedin
Mustafa Kurban
AI4CE
0
0
0
17 May 2025
Towards Faster and More Compact Foundation Models for Molecular Property Prediction
Towards Faster and More Compact Foundation Models for Molecular Property Prediction
Yasir Ghunaim
Andrés Villa
Gergo Ignacz
Gyorgy Szekely
Motasem Alfarra
Bernard Ghanem
AI4CE
90
0
0
28 Apr 2025
polyGen: A Learning Framework for Atomic-level Polymer Structure Generation
polyGen: A Learning Framework for Atomic-level Polymer Structure Generation
Ayush Jain
Rampi Ramprasad
48
0
0
24 Apr 2025
Scaling Laws of Graph Neural Networks for Atomistic Materials Modeling
Scaling Laws of Graph Neural Networks for Atomistic Materials Modeling
Chaojian Li
Zhifan Ye
Massimiliano Lupo Pasini
Jong Youl Choi
Cheng Wan
Y. Lin
Prasanna Balaprakash
39
0
0
10 Apr 2025
Accelerating and enhancing thermodynamic simulations of electrochemical interfaces
Accelerating and enhancing thermodynamic simulations of electrochemical interfaces
Xiaochen Du
Mengren Liu
Jiayu Peng
Hoje Chun
Alexander Hoffman
Bilge Yildiz
Lin Li
Martin Z. Bazant
Rafael Gómez-Bombarelli
56
0
0
22 Mar 2025
Transfer learning from first-principles calculations to experiments with chemistry-informed domain transformation
Transfer learning from first-principles calculations to experiments with chemistry-informed domain transformation
Yuta Yahagi
Kiichi Obuchi
Fumihiko Kosaka
Kota Matsui
26
0
0
20 Mar 2025
CrystalFramer: Rethinking the Role of Frames for SE(3)-Invariant Crystal Structure Modeling
Yusei Ito
Tatsunori Taniai
Ryo Igarashi
Yoshitaka Ushiku
K. Ono
60
0
0
04 Mar 2025
A Periodic Bayesian Flow for Material Generation
A Periodic Bayesian Flow for Material Generation
Hanlin Wu
Yuxuan Song
Jingjing Gong
Ziyao Cao
Y. Ouyang
Jianbing Zhang
Hao Zhou
Wei-Ying Ma
Jingjing Liu
DiffM
69
2
0
04 Feb 2025
DenseGNN: universal and scalable deeper graph neural networks for high-performance property prediction in crystals and molecules
DenseGNN: universal and scalable deeper graph neural networks for high-performance property prediction in crystals and molecules
Hongwei Du
Jiamin Wang
Jian Hui
Lanting Zhang
Hong Wang
AI4CE
GNN
29
2
0
08 Jan 2025
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
Filippo Bigi
Marcel F. Langer
Michele Ceriotti
AI4CE
93
7
0
16 Dec 2024
Bridging Geometric States via Geometric Diffusion Bridge
Bridging Geometric States via Geometric Diffusion Bridge
Shengjie Luo
Yixian Xu
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
39
0
0
31 Oct 2024
The Importance of Being Scalable: Improving the Speed and Accuracy of
  Neural Network Interatomic Potentials Across Chemical Domains
The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains
Eric Qu
Aditi S. Krishnapriyan
LRM
30
10
0
31 Oct 2024
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
Luis Barroso-Luque
Muhammed Shuaibi
Xiang Fu
Brandon M. Wood
Misko Dzamba
Meng Gao
Ammar Rizvi
C. L. Zitnick
Zachary W. Ulissi
AI4CE
PINN
41
16
0
16 Oct 2024
Improving Molecular Modeling with Geometric GNNs: an Empirical Study
Improving Molecular Modeling with Geometric GNNs: an Empirical Study
Ali Ramlaoui
Théo Saulus
Basile Terver
Victor Schmidt
David Rolnick
Fragkiskos D. Malliaros
Alexandre Duval
AI4CE
38
1
0
11 Jul 2024
MaTableGPT: GPT-based Table Data Extractor from Materials Science
  Literature
MaTableGPT: GPT-based Table Data Extractor from Materials Science Literature
Gyeong Hoon Yi
Jiwoo Choi
Hyeongyun Song
Olivia Miano
Jaewoong Choi
...
Seok Su Sohn
David Buttler
A. Hiszpanski
S. Han
Donghun Kim
LMTD
39
3
0
08 Jun 2024
Guided Multi-objective Generative AI to Enhance Structure-based Drug Design
Guided Multi-objective Generative AI to Enhance Structure-based Drug Design
Amit Kadan
Kevin Ryczko
Erika Lloyd
A. Roitberg
Takeshi Yamazaki
93
1
0
20 May 2024
React-OT: Optimal Transport for Generating Transition State in Chemical
  Reactions
React-OT: Optimal Transport for Generating Transition State in Chemical Reactions
Chenru Duan
Guan-Horng Liu
Yuanqi Du
Tianrong Chen
Qiyuan Zhao
Haojun Jia
Carla P. Gomes
Evangelos A. Theodorou
Heather J. Kulik
OT
45
3
0
20 Apr 2024
Adapting OC20-trained EquiformerV2 Models for High-Entropy Materials
Adapting OC20-trained EquiformerV2 Models for High-Entropy Materials
Christian M. Clausen
Jan Rossmeisl
Zachary W. Ulissi
35
1
0
14 Mar 2024
Generalizing Denoising to Non-Equilibrium Structures Improves
  Equivariant Force Fields
Generalizing Denoising to Non-Equilibrium Structures Improves Equivariant Force Fields
Yi-Lun Liao
Tess E. Smidt
Abhishek Das
DiffM
AI4CE
40
12
0
14 Mar 2024
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Jiaqi Han
Jiacheng Cen
Liming Wu
Zongzhao Li
Xiangzhe Kong
...
Zhewei Wei
Deli Zhao
Yu Rong
Wenbing Huang
Wenbing Huang
AI4CE
34
20
0
01 Mar 2024
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset
  for Advancing Graph Machine Learning
CHILI: Chemically-Informed Large-scale Inorganic Nanomaterials Dataset for Advancing Graph Machine Learning
Ulrik Friis-Jensen
Frederik L. Johansen
A. Anker
Erik B. Dam
Kirsten M. Ø. Jensen
Raghavendra Selvan
AI4CE
40
3
0
20 Feb 2024
Structure-based out-of-distribution (OOD) materials property prediction:
  a benchmark study
Structure-based out-of-distribution (OOD) materials property prediction: a benchmark study
Sadman Sadeed Omee
Nihang Fu
Rongzhi Dong
Ming Hu
Jianjun Hu
OOD
31
17
0
16 Jan 2024
Accelerating the prediction of inorganic surfaces with machine learning
  interatomic potentials
Accelerating the prediction of inorganic surfaces with machine learning interatomic potentials
Kyle Noordhoek
Christopher J. Bartel
AI4CE
27
6
0
18 Dec 2023
Higher-Order Equivariant Neural Networks for Charge Density Prediction
  in Materials
Higher-Order Equivariant Neural Networks for Charge Density Prediction in Materials
Teddy Koker
Keegan Quigley
Eric Taw
Kevin Tibbetts
Lin Li
20
12
0
08 Dec 2023
AdsorbRL: Deep Multi-Objective Reinforcement Learning for Inverse
  Catalysts Design
AdsorbRL: Deep Multi-Objective Reinforcement Learning for Inverse Catalysts Design
Romain Lacombe
Lucas Hendren
Khalid El-Awady
13
1
0
04 Dec 2023
The perpetual motion machine of AI-generated data and the distraction of
  ChatGPT-as-scientist
The perpetual motion machine of AI-generated data and the distraction of ChatGPT-as-scientist
Jennifer Listgarten
LRM
14
2
0
29 Nov 2023
Unified machine learning tasks and datasets for enhancing renewable
  energy
Unified machine learning tasks and datasets for enhancing renewable energy
Arsam Aryandoust
Thomas Rigoni
Francesco di Stefano
Anthony Patt
40
0
0
12 Nov 2023
Gradual Optimization Learning for Conformational Energy Minimization
Gradual Optimization Learning for Conformational Energy Minimization
Artem Tsypin
L. Ugadiarov
Kuzma Khrabrov
Alexander Telepov
Egor Rumiantsev
Alexey Skrynnik
Aleksandr I. Panov
Dmitry Vetrov
E. Tutubalina
Artur Kadurin
24
1
0
05 Nov 2023
The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct
  Air Capture
The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct Air Capture
Anuroop Sriram
Sihoon Choi
Xiaohan Yu
Logan M. Brabson
Abhishek Das
Zachary W. Ulissi
Matthew Uyttendaele
A. Medford
D. Sholl
AI4CE
31
35
0
01 Nov 2023
Towards Combinatorial Generalization for Catalysts: A Kohn-Sham
  Charge-Density Approach
Towards Combinatorial Generalization for Catalysts: A Kohn-Sham Charge-Density Approach
Phillip Pope
David Jacobs
26
3
0
28 Oct 2023
From Molecules to Materials: Pre-training Large Generalizable Models for
  Atomic Property Prediction
From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction
Nima Shoghi
Adeesh Kolluru
John R. Kitchin
Zachary W. Ulissi
C. L. Zitnick
Brandon M. Wood
AI4CE
24
32
0
25 Oct 2023
MatSciML: A Broad, Multi-Task Benchmark for Solid-State Materials
  Modeling
MatSciML: A Broad, Multi-Task Benchmark for Solid-State Materials Modeling
Kin Long Kelvin Lee
Carmelo Gonzales
Marcel Nassar
Matthew Spellings
Mikhail Galkin
Santiago Miret
35
15
0
12 Sep 2023
Matbench Discovery -- A framework to evaluate machine learning crystal
  stability predictions
Matbench Discovery -- A framework to evaluate machine learning crystal stability predictions
Janosh Riebesell
Rhys E. A. Goodall
Philipp Benner
Chiang Yuan
Bowen Deng
A. Lee
Anubhav Jain
Kristin A. Persson
OOD
36
35
0
28 Aug 2023
On Data Imbalance in Molecular Property Prediction with Pre-training
On Data Imbalance in Molecular Property Prediction with Pre-training
Limin Wang
Masatoshi Hanai
Toyotaro Suzumura
Shun Takashige
Kenjiro Taura
AI4CE
35
0
0
17 Aug 2023
Crystal Structure Prediction by Joint Equivariant Diffusion
Crystal Structure Prediction by Joint Equivariant Diffusion
Rui Jiao
Wen-bing Huang
Peijia Lin
Jiaqi Han
Pin Chen
Yutong Lu
Yang Liu
DiffM
27
60
0
30 Jul 2023
EquiformerV2: Improved Equivariant Transformer for Scaling to
  Higher-Degree Representations
EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations
Yidong Liao
Brandon M. Wood
Abhishek Das
Tess E. Smidt
26
131
0
21 Jun 2023
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
Haiyang Yu
Meng Liu
Youzhi Luo
A. Strasser
X. Qian
Xiaoning Qian
Shuiwang Ji
15
20
0
15 Jun 2023
Automated 3D Pre-Training for Molecular Property Prediction
Automated 3D Pre-Training for Molecular Property Prediction
Xu Wang
Huan Zhao
Weiwei Tu
Quanming Yao
AI4CE
28
35
0
13 Jun 2023
Generalist Equivariant Transformer Towards 3D Molecular Interaction
  Learning
Generalist Equivariant Transformer Towards 3D Molecular Interaction Learning
Xiangzhe Kong
Wen-bing Huang
Yang Liu
22
13
0
02 Jun 2023
Connectivity Optimized Nested Graph Networks for Crystal Structures
Connectivity Optimized Nested Graph Networks for Crystal Structures
R. Ruff
Patrick Reiser
Jan Stuhmer
Pascal Friederich
GNN
28
11
0
27 Feb 2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Saro Passaro
C. L. Zitnick
3DPC
34
79
0
07 Feb 2023
GPS++: Reviving the Art of Message Passing for Molecular Property
  Prediction
GPS++: Reviving the Art of Message Passing for Molecular Property Prediction
Dominic Masters
Josef Dean
Kerstin Klaser
Zhiyi Li
Sam Maddrell-Mander
...
D. Beker
Andrew Fitzgibbon
Shenyang Huang
Ladislav Rampášek
Dominique Beaini
38
8
0
06 Feb 2023
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using
  Generalizable Machine Learning Potentials
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using Generalizable Machine Learning Potentials
Janice Lan
Aini Palizhati
Muhammed Shuaibi
Brandon M. Wood
Brook Wander
Abhishek Das
M. Uyttendaele
C. L. Zitnick
Zachary W. Ulissi
35
44
0
29 Nov 2022
The Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in
  Materials Science
The Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in Materials Science
Santiago Miret
Kin Long Kelvin Lee
Carmelo Gonzales
Marcel Nassar
Matthew Spellings
38
19
0
31 Oct 2022
Forces are not Enough: Benchmark and Critical Evaluation for Machine
  Learning Force Fields with Molecular Simulations
Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations
Xiang Fu
Zhenghao Wu
Wujie Wang
T. Xie
S. Keten
Rafael Gómez-Bombarelli
Tommi Jaakkola
32
136
0
13 Oct 2022
AutoML for Climate Change: A Call to Action
AutoML for Climate Change: A Call to Action
Renbo Tu
Nicholas Roberts
Vishak Prasad
Sibasis Nayak
P. Jain
Frederic Sala
Ganesh Ramakrishnan
Ameet Talwalkar
W. Neiswanger
Colin White
33
6
0
07 Oct 2022
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
215
1,240
0
08 Jan 2021
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
...
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
232
504
0
20 Oct 2020
1