ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.08705
  4. Cited By
Explainability's Gain is Optimality's Loss? -- How Explanations Bias
  Decision-making
v1v2 (latest)

Explainability's Gain is Optimality's Loss? -- How Explanations Bias Decision-making

17 June 2022
Charley L. Wan
Rodrigo Belo
Leid Zejnilovic
    FAttFaML
ArXiv (abs)PDFHTML

Papers citing "Explainability's Gain is Optimality's Loss? -- How Explanations Bias Decision-making"

10 / 10 papers shown
Title
Explaining Black-Box Algorithms Using Probabilistic Contrastive
  Counterfactuals
Explaining Black-Box Algorithms Using Probabilistic Contrastive Counterfactuals
Sainyam Galhotra
Romila Pradhan
Babak Salimi
CML
71
109
0
22 Mar 2021
Fairness in Machine Learning
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
299
500
0
31 Dec 2020
The Struggles of Feature-Based Explanations: Shapley Values vs. Minimal
  Sufficient Subsets
The Struggles of Feature-Based Explanations: Shapley Values vs. Minimal Sufficient Subsets
Oana-Maria Camburu
Eleonora Giunchiglia
Jakob N. Foerster
Thomas Lukasiewicz
Phil Blunsom
FAtt
69
23
0
23 Sep 2020
Problems with Shapley-value-based explanations as feature importance
  measures
Problems with Shapley-value-based explanations as feature importance measures
Indra Elizabeth Kumar
Suresh Venkatasubramanian
C. Scheidegger
Sorelle A. Friedler
TDIFAtt
98
368
0
25 Feb 2020
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDaFaML
571
4,391
0
23 Aug 2019
Efficient Search for Diverse Coherent Explanations
Efficient Search for Diverse Coherent Explanations
Chris Russell
75
238
0
02 Jan 2019
Ít's Reducing a Human Being to a Percentage'; Perceptions of Justice in
  Algorithmic Decisions
Ít's Reducing a Human Being to a Percentage'; Perceptions of Justice in Algorithmic Decisions
Reuben Binns
Max Van Kleek
Michael Veale
Ulrik Lyngs
Jun Zhao
N. Shadbolt
FaML
72
546
0
31 Jan 2018
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
293
2,271
0
24 Jun 2017
XGBoost: A Scalable Tree Boosting System
XGBoost: A Scalable Tree Boosting System
Tianqi Chen
Carlos Guestrin
817
39,062
0
09 Mar 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,071
0
16 Feb 2016
1