Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.08705
Cited By
v1
v2 (latest)
Explainability's Gain is Optimality's Loss? -- How Explanations Bias Decision-making
17 June 2022
Charley L. Wan
Rodrigo Belo
Leid Zejnilovic
FAtt
FaML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Explainability's Gain is Optimality's Loss? -- How Explanations Bias Decision-making"
10 / 10 papers shown
Title
Explaining Black-Box Algorithms Using Probabilistic Contrastive Counterfactuals
Sainyam Galhotra
Romila Pradhan
Babak Salimi
CML
67
109
0
22 Mar 2021
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
299
500
0
31 Dec 2020
The Struggles of Feature-Based Explanations: Shapley Values vs. Minimal Sufficient Subsets
Oana-Maria Camburu
Eleonora Giunchiglia
Jakob N. Foerster
Thomas Lukasiewicz
Phil Blunsom
FAtt
67
23
0
23 Sep 2020
Problems with Shapley-value-based explanations as feature importance measures
Indra Elizabeth Kumar
Suresh Venkatasubramanian
C. Scheidegger
Sorelle A. Friedler
TDI
FAtt
98
368
0
25 Feb 2020
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
571
4,391
0
23 Aug 2019
Efficient Search for Diverse Coherent Explanations
Chris Russell
75
238
0
02 Jan 2019
Ít's Reducing a Human Being to a Percentage'; Perceptions of Justice in Algorithmic Decisions
Reuben Binns
Max Van Kleek
Michael Veale
Ulrik Lyngs
Jun Zhao
N. Shadbolt
FaML
69
546
0
31 Jan 2018
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
293
2,271
0
24 Jun 2017
XGBoost: A Scalable Tree Boosting System
Tianqi Chen
Carlos Guestrin
817
39,062
0
09 Mar 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
17,071
0
16 Feb 2016
1