Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.08363
Cited By
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability
16 June 2022
Jonathan Crabbé
Alicia Curth
Ioana Bica
M. Schaar
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability"
33 / 33 papers shown
Title
Covariate-Balancing-Aware Interpretable Deep Learning models for Treatment Effect Estimation
Kan Chen
Qishuo Yin
Q. Long
CML
64
5
0
07 Mar 2022
Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation
Yi-Fan Zhang
Hanlin Zhang
Zachary Chase Lipton
Li Erran Li
Eric P. Xing
OODD
96
30
0
02 Feb 2022
Explaining Latent Representations with a Corpus of Examples
Jonathan Crabbé
Zhaozhi Qian
F. Imrie
M. Schaar
FAtt
68
38
0
28 Oct 2021
Explaining Time Series Predictions with Dynamic Masks
Jonathan Crabbé
M. Schaar
FAtt
AI4TS
93
81
0
09 Jun 2021
On Inductive Biases for Heterogeneous Treatment Effect Estimation
Alicia Curth
M. Schaar
CML
186
84
0
07 Jun 2021
Causal Effect Inference for Structured Treatments
Jean Kaddour
Yuchen Zhu
Qi Liu
Matt J. Kusner
Ricardo M. A. Silva
CML
248
51
0
03 Jun 2021
Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning Algorithms
Alicia Curth
M. Schaar
CML
173
149
0
26 Jan 2021
Counterfactual Representation Learning with Balancing Weights
Serge Assaad
Shuxi Zeng
Chenyang Tao
Shounak Datta
Nikhil Mehta
Ricardo Henao
Fan Li
Lawrence Carin
CML
OOD
143
65
0
23 Oct 2020
Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey
Arun Das
P. Rad
XAI
172
604
0
16 Jun 2020
Towards optimal doubly robust estimation of heterogeneous causal effects
Edward H. Kennedy
CML
191
327
0
29 Apr 2020
Adaptive Hyper-box Matching for Interpretable Individualized Treatment Effect Estimation
Marco Morucci
Vittorio Orlandi
Sudeepa Roy
Cynthia Rudin
A. Volfovsky
CML
41
15
0
03 Mar 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
135
6,321
0
22 Oct 2019
Benchmarking Attribution Methods with Relative Feature Importance
Mengjiao Yang
Been Kim
FAtt
XAI
73
142
0
23 Jul 2019
A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI
Erico Tjoa
Cuntai Guan
XAI
124
1,455
0
17 Jul 2019
Interpretable Subgroup Discovery in Treatment Effect Estimation with Application to Opioid Prescribing Guidelines
Chirag Nagpal
Dennis L. Wei
B. Vinzamuri
Monica Shekhar
Sara E. Berger
Subhro Das
Kush R. Varshney
CML
39
25
0
08 May 2019
Learning Counterfactual Representations for Estimating Individual Dose-Response Curves
Patrick Schwab
Lorenz Linhardt
Stefan Bauer
J. M. Buhmann
W. Karlen
CML
OOD
89
135
0
03 Feb 2019
Learning Interpretable Models with Causal Guarantees
Carolyn Kim
Osbert Bastani
FaML
OOD
CML
73
17
0
24 Jan 2019
Quasi-Oracle Estimation of Heterogeneous Treatment Effects
Xinkun Nie
Stefan Wager
CML
174
655
0
13 Dec 2017
Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition
Vincent Dorie
J. Hill
Uri Shalit
M. Scott
D. Cervone
CML
249
288
0
09 Jul 2017
Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning
Sören R. Künzel
Jasjeet Sekhon
Peter J. Bickel
Bin Yu
CML
185
930
0
12 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,090
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
83
1,526
0
11 Apr 2017
Bayesian Inference of Individualized Treatment Effects using Multi-task Gaussian Processes
Ahmed Alaa
M. Schaar
CML
177
304
0
10 Apr 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
203
3,884
0
10 Apr 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
227
2,910
0
14 Mar 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
193
6,027
0
04 Mar 2017
Generalized Random Forests
Susan Athey
J. Tibshirani
Stefan Wager
351
1,371
0
05 Oct 2016
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
306
729
0
12 May 2016
Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
Wojciech Samek
FAtt
94
462
0
04 Apr 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
17,071
0
16 Feb 2016
Estimation and Inference of Heterogeneous Treatment Effects using Random Forests
Stefan Wager
Susan Athey
SyDa
CML
382
2,496
0
14 Oct 2015
Recursive Partitioning for Heterogeneous Causal Effects
Susan Athey
Guido Imbens
CML
271
1,439
0
05 Apr 2015
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
317
7,321
0
20 Dec 2013
1