ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.08309
  4. Cited By
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use
  Case
v1v2 (latest)

Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case

16 June 2022
Clément Chadebec
Louis J. Vincent
S. Allassonnière
    DRL
ArXiv (abs)PDFHTMLGithub (1915★)

Papers citing "Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case"

44 / 44 papers shown
Title
Bidirectional Variational Autoencoders
Bidirectional Variational Autoencoders
Bart Kosko
Olaoluwa Adigun
BDL
69
0
0
21 May 2025
Analyzing Generative Models by Manifold Entropic Metrics
Analyzing Generative Models by Manifold Entropic Metrics
Daniel Galperin
Ullrich Köthe
DRL
142
0
0
25 Oct 2024
Data Augmentation in High Dimensional Low Sample Size Setting Using a
  Geometry-Based Variational Autoencoder
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
103
69
0
30 Apr 2021
Variational Autoencoder with Learned Latent Structure
Variational Autoencoder with Learned Latent Structure
Marissa Connor
Gregory H. Canal
Christopher Rozell
CMLDRL
71
46
0
18 Jun 2020
Variational Autoencoders with Riemannian Brownian Motion Priors
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDLDRL
124
49
0
12 Feb 2020
Effectively Unbiased FID and Inception Score and where to find them
Effectively Unbiased FID and Inception Score and where to find them
Min Jin Chong
David A. Forsyth
EGVM
93
205
0
16 Nov 2019
Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2
Ali Razavi
Aaron van den Oord
Oriol Vinyals
DRLBDL
149
1,828
0
02 Jun 2019
Learning Hierarchical Priors in VAEs
Learning Hierarchical Priors in VAEs
Alexej Klushyn
Nutan Chen
Richard Kurle
Botond Cseke
Patrick van der Smagt
BDLCMLDRL
50
100
0
13 May 2019
From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders
Partha Ghosh
Mehdi S. M. Sajjadi
Antonio Vergari
Michael J. Black
Bernhard Schölkopf
DRL
84
272
0
29 Mar 2019
Diagnosing and Enhancing VAE Models
Diagnosing and Enhancing VAE Models
Bin Dai
David Wipf
DRL
68
381
0
14 Mar 2019
Continuous Hierarchical Representations with Poincaré Variational
  Auto-Encoders
Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders
Emile Mathieu
Charline Le Lan
Chris J. Maddison
Ryota Tomioka
Yee Whye Teh
BDLDRL
80
178
0
17 Jan 2019
Resampled Priors for Variational Autoencoders
Resampled Priors for Variational Autoencoders
Matthias Bauer
A. Mnih
BDLDRL
112
111
0
26 Oct 2018
How good is my GAN?
How good is my GAN?
K. Shmelkov
Cordelia Schmid
Alahari Karteek
GANEGVM
51
350
0
25 Jul 2018
Understanding and Improving Interpolation in Autoencoders via an
  Adversarial Regularizer
Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer
David Berthelot
Colin Raffel
Aurko Roy
Ian Goodfellow
64
264
0
19 Jul 2018
Explorations in Homeomorphic Variational Auto-Encoding
Explorations in Homeomorphic Variational Auto-Encoding
Luca Falorsi
P. D. Haan
Tim R. Davidson
Nicola De Cao
Maurice Weiler
Patrick Forré
Taco S. Cohen
BDLDRL
99
115
0
12 Jul 2018
Hamiltonian Variational Auto-Encoder
Hamiltonian Variational Auto-Encoder
Anthony L. Caterini
Arnaud Doucet
Dino Sejdinovic
BDLDRL
57
95
0
29 May 2018
Understanding disentangling in $β$-VAE
Understanding disentangling in βββ-VAE
Christopher P. Burgess
I. Higgins
Arka Pal
Loic Matthey
Nicholas Watters
Guillaume Desjardins
Alexander Lerchner
CoGeDRL
71
831
0
10 Apr 2018
Hyperspherical Variational Auto-Encoders
Hyperspherical Variational Auto-Encoders
Tim R. Davidson
Luca Falorsi
Nicola De Cao
Thomas Kipf
Jakub M. Tomczak
DRLBDL
116
384
0
03 Apr 2018
Disentangling by Factorising
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGeOOD
64
1,356
0
16 Feb 2018
Inference Suboptimality in Variational Autoencoders
Inference Suboptimality in Variational Autoencoders
Chris Cremer
Xuechen Li
David Duvenaud
DRLBDL
135
283
0
10 Jan 2018
A Note on the Inception Score
A Note on the Inception Score
Shane T. Barratt
Rishi Sharma
EGVM
103
694
0
06 Jan 2018
The Riemannian Geometry of Deep Generative Models
The Riemannian Geometry of Deep Generative Models
Hang Shao
Abhishek Kumar
P. T. Fletcher
DRL
69
183
0
21 Nov 2017
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
182
694
0
15 Nov 2017
Wasserstein Auto-Encoders
Wasserstein Auto-Encoders
Ilya O. Tolstikhin
Olivier Bousquet
Sylvain Gelly
B. Schölkopf
DRL
131
1,057
0
05 Nov 2017
Metrics for Deep Generative Models
Metrics for Deep Generative Models
Nutan Chen
Alexej Klushyn
Richard Kurle
Xueyan Jiang
Justin Bayer
Patrick van der Smagt
SyDaDRL
72
116
0
03 Nov 2017
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDLSSLOCL
230
5,071
0
02 Nov 2017
Latent Space Oddity: on the Curvature of Deep Generative Models
Latent Space Oddity: on the Curvature of Deep Generative Models
Georgios Arvanitidis
Lars Kai Hansen
Søren Hauberg
DRL
110
270
0
31 Oct 2017
InfoVAE: Information Maximizing Variational Autoencoders
InfoVAE: Information Maximizing Variational Autoencoders
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
95
447
0
07 Jun 2017
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
215
1,360
0
19 May 2017
VAE with a VampPrior
VAE with a VampPrior
Jakub M. Tomczak
Max Welling
GANBDL
68
635
0
19 May 2017
Deep Variational Information Bottleneck
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
128
1,728
0
01 Dec 2016
Variational Lossy Autoencoder
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRLSSLGAN
154
676
0
08 Nov 2016
Deep Unsupervised Clustering with Gaussian Mixture Variational
  Autoencoders
Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders
Nat Dilokthanakul
P. Mediano
M. Garnelo
M. J. Lee
Hugh Salimbeni
Kai Arulkumaran
Murray Shanahan
DRL
77
658
0
08 Nov 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDLDRL
150
1,825
0
15 Jun 2016
Improved Techniques for Training GANs
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
486
9,073
0
10 Jun 2016
Autoencoding beyond pixels using a learned similarity metric
Autoencoding beyond pixels using a learned similarity metric
Anders Boesen Lindbo Larsen
Søren Kaae Sønderby
Hugo Larochelle
Ole Winther
GAN
180
2,073
0
31 Dec 2015
Learning to Generate Images with Perceptual Similarity Metrics
Learning to Generate Images with Perceptual Similarity Metrics
Jake C. Snell
Karl Ridgeway
Renjie Liao
Brett D. Roads
Michael C. Mozer
R. Zemel
EGVM
73
178
0
19 Nov 2015
Adversarial Autoencoders
Adversarial Autoencoders
Alireza Makhzani
Jonathon Shlens
Navdeep Jaitly
Ian Goodfellow
Brendan J. Frey
GAN
103
2,228
0
18 Nov 2015
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
280
1,246
0
01 Sep 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
322
4,197
0
21 May 2015
MADE: Masked Autoencoder for Distribution Estimation
MADE: Masked Autoencoder for Distribution Estimation
M. Germain
Karol Gregor
Iain Murray
Hugo Larochelle
OODSyDaUQCV
179
873
0
12 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
247
8,429
0
28 Nov 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
1