ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.08269
  4. Cited By
Learning with little mixing

Learning with little mixing

16 June 2022
Ingvar M. Ziemann
Stephen Tu
ArXivPDFHTML

Papers citing "Learning with little mixing"

24 / 24 papers shown
Title
Nonconvex Linear System Identification with Minimal State Representation
Nonconvex Linear System Identification with Minimal State Representation
Uday Kiran Reddy Tadipatri
B. Haeffele
Joshua Agterberg
Ingvar Ziemann
René Vidal
33
0
0
26 Apr 2025
Stability properties of gradient flow dynamics for the symmetric
  low-rank matrix factorization problem
Stability properties of gradient flow dynamics for the symmetric low-rank matrix factorization problem
Hesameddin Mohammadi
Mohammad Tinati
Stephen Tu
Mahdi Soltanolkotabi
M. Jovanović
73
0
0
24 Nov 2024
Long-Context Linear System Identification
Long-Context Linear System Identification
Oğuz Kaan Yüksel
Mathieu Even
Nicolas Flammarion
26
0
0
08 Oct 2024
On the Consistency of Kernel Methods with Dependent Observations
On the Consistency of Kernel Methods with Dependent Observations
P. Massiani
Sebastian Trimpe
Friedrich Solowjow
25
0
0
10 Jun 2024
Single Trajectory Conformal Prediction
Single Trajectory Conformal Prediction
Brian Lee
Nikolai Matni
38
2
0
03 Jun 2024
Active Learning for Control-Oriented Identification of Nonlinear Systems
Active Learning for Control-Oriented Identification of Nonlinear Systems
Bruce D. Lee
Ingvar M. Ziemann
George J. Pappas
Nikolai Matni
29
5
0
13 Apr 2024
A least-square method for non-asymptotic identification in linear
  switching control
A least-square method for non-asymptotic identification in linear switching control
Haoyuan Sun
Ali Jadbabaie
34
0
0
11 Apr 2024
Rate-Optimal Non-Asymptotics for the Quadratic Prediction Error Method
Rate-Optimal Non-Asymptotics for the Quadratic Prediction Error Method
Charis J. Stamouli
Ingvar M. Ziemann
George J. Pappas
23
0
0
11 Apr 2024
Finite Sample Frequency Domain Identification
Finite Sample Frequency Domain Identification
Anastasios Tsiamis
M. Abdalmoaty
Roy S. Smith
John Lygeros
34
0
0
01 Apr 2024
On the Performance of Empirical Risk Minimization with Smoothed Data
On the Performance of Empirical Risk Minimization with Smoothed Data
Adam Block
Alexander Rakhlin
Abhishek Shetty
39
3
0
22 Feb 2024
From Self-Attention to Markov Models: Unveiling the Dynamics of
  Generative Transformers
From Self-Attention to Markov Models: Unveiling the Dynamics of Generative Transformers
M. E. Ildiz
Yixiao Huang
Yingcong Li
A. S. Rawat
Samet Oymak
38
17
0
21 Feb 2024
Sharp Rates in Dependent Learning Theory: Avoiding Sample Size Deflation for the Square Loss
Sharp Rates in Dependent Learning Theory: Avoiding Sample Size Deflation for the Square Loss
Ingvar M. Ziemann
Stephen Tu
George J. Pappas
Nikolai Matni
54
8
0
08 Feb 2024
A Tutorial on the Non-Asymptotic Theory of System Identification
A Tutorial on the Non-Asymptotic Theory of System Identification
Ingvar M. Ziemann
Anastasios Tsiamis
Bruce D. Lee
Yassir Jedra
Nikolai Matni
George J. Pappas
30
25
0
07 Sep 2023
Optimistic Active Exploration of Dynamical Systems
Optimistic Active Exploration of Dynamical Systems
Bhavya Sukhija
Lenart Treven
Cansu Sancaktar
Sebastian Blaes
Stelian Coros
Andreas Krause
21
17
0
21 Jun 2023
Non-asymptotic System Identification for Linear Systems with Nonlinear
  Policies
Non-asymptotic System Identification for Linear Systems with Nonlinear Policies
Yingying Li
Tianpeng Zhang
Subhro Das
J. Shamma
Na Li
26
7
0
17 Jun 2023
The noise level in linear regression with dependent data
The noise level in linear regression with dependent data
Ingvar M. Ziemann
Stephen Tu
George J. Pappas
Nikolai Matni
27
5
0
18 May 2023
Streaming PCA for Markovian Data
Streaming PCA for Markovian Data
Syamantak Kumar
Purnamrita Sarkar
42
6
0
03 May 2023
Transformers as Algorithms: Generalization and Stability in In-context
  Learning
Transformers as Algorithms: Generalization and Stability in In-context Learning
Yingcong Li
M. E. Ildiz
Dimitris Papailiopoulos
Samet Oymak
20
152
0
17 Jan 2023
A note on the smallest eigenvalue of the empirical covariance of causal
  Gaussian processes
A note on the smallest eigenvalue of the empirical covariance of causal Gaussian processes
Ingvar M. Ziemann
32
3
0
19 Dec 2022
Concentration Phenomenon for Random Dynamical Systems: An Operator
  Theoretic Approach
Concentration Phenomenon for Random Dynamical Systems: An Operator Theoretic Approach
Muhammad Naeem
Miroslav Pajic
17
1
0
07 Dec 2022
Learning Nonlinear Couplings in Network of Agents from a Single Sample
  Trajectory
Learning Nonlinear Couplings in Network of Agents from a Single Sample Trajectory
Arash A. Amini
Qiyu Sun
N. Motee
23
0
0
20 Nov 2022
Statistical Learning Theory for Control: A Finite Sample Perspective
Statistical Learning Theory for Control: A Finite Sample Perspective
Anastasios Tsiamis
Ingvar M. Ziemann
Nikolai Matni
George J. Pappas
23
73
0
12 Sep 2022
Independence Testing for Temporal Data
Independence Testing for Temporal Data
Cencheng Shen
Jaewon Chung
Ronak R. Mehta
Ting Xu
Joshua T. Vogelstein
32
5
0
18 Aug 2019
Learning without Concentration
Learning without Concentration
S. Mendelson
85
334
0
01 Jan 2014
1