49
3

A note on the smallest eigenvalue of the empirical covariance of causal Gaussian processes

Abstract

We present a simple proof for bounding the smallest eigenvalue of the empirical covariance in a causal Gaussian process. Along the way, we establish a one-sided tail inequality for Gaussian quadratic forms using a causal decomposition. Our proof only uses elementary facts about the Gaussian distribution and the union bound. We conclude with an example in which we provide a performance guarantee for least squares identification of a vector autoregression.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.