Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.07766
Cited By
Pareto Invariant Risk Minimization: Towards Mitigating the Optimization Dilemma in Out-of-Distribution Generalization
15 June 2022
Yongqiang Chen
Kaiwen Zhou
Yatao Bian
Binghui Xie
Bing Wu
Yonggang Zhang
Kaili Ma
Han Yang
P. Zhao
Bo Han
James Cheng
OOD
OODD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Pareto Invariant Risk Minimization: Towards Mitigating the Optimization Dilemma in Out-of-Distribution Generalization"
20 / 20 papers shown
Title
Robust Invariant Representation Learning by Distribution Extrapolation
Kotaro Yoshida
Konstantinos Slavakis
OOD
24
0
0
22 May 2025
Unsupervised Invariant Risk Minimization
Yotam Norman
Ron Meir
OOD
37
0
0
18 May 2025
Invariant Correlation of Representation with Label: Enhancing Domain Generalization in Noisy Environments
Gaojie Jin
Ronghui Mu
Xinping Yi
Xiaowei Huang
Lijun Zhang
85
0
0
01 Jul 2024
Learning Invariant Causal Mechanism from Vision-Language Models
Changwen Zheng
Siyu Zhao
Xingyu Zhang
Jiangmeng Li
Changwen Zheng
Jingyao Wang
CML
BDL
VLM
56
0
0
24 May 2024
M-HOF-Opt: Multi-Objective Hierarchical Output Feedback Optimization via Multiplier Induced Loss Landscape Scheduling
Xudong Sun
Nutan Chen
Alexej Gossmann
Yu Xing
Carla Feistner
...
Felix Drost
Daniele Scarcella
Lisa Beer
Carsten Marr
Carsten Marr
64
1
0
20 Mar 2024
Specification Overfitting in Artificial Intelligence
Benjamin Roth
Pedro Henrique Luz de Araujo
Yuxi Xia
Saskia Kaltenbrunner
Christoph Korab
114
1
0
13 Mar 2024
ID and OOD Performance Are Sometimes Inversely Correlated on Real-world Datasets
Damien Teney
Yong Lin
Seong Joon Oh
Ehsan Abbasnejad
OOD
447
48
0
01 Sep 2022
On Characterizing the Trade-off in Invariant Representation Learning
Bashir Sadeghi
Sepehr Dehdashtian
Vishnu Boddeti
46
7
0
08 Sep 2021
Just Train Twice: Improving Group Robustness without Training Group Information
Emmy Liu
Behzad Haghgoo
Annie S. Chen
Aditi Raghunathan
Pang Wei Koh
Shiori Sagawa
Percy Liang
Chelsea Finn
OOD
62
549
0
19 Jul 2021
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
30
258
0
11 Jun 2021
Evading the Simplicity Bias: Training a Diverse Set of Models Discovers Solutions with Superior OOD Generalization
Damien Teney
Ehsan Abbasnejad
Simon Lucey
Anton Van Den Hengel
63
88
0
12 May 2021
Empirical or Invariant Risk Minimization? A Sample Complexity Perspective
Kartik Ahuja
Jun Wang
Amit Dhurandhar
Karthikeyan Shanmugam
Kush R. Varshney
OOD
55
79
0
30 Oct 2020
Environment Inference for Invariant Learning
Elliot Creager
J. Jacobsen
R. Zemel
OOD
35
376
0
14 Oct 2020
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
128
2,023
0
16 Apr 2020
Pareto Multi-Task Learning
Xi Lin
Hui-Ling Zhen
Zhenhua Li
Qingfu Zhang
Sam Kwong
44
346
0
30 Dec 2019
Domain Generalization via Model-Agnostic Learning of Semantic Features
Qi Dou
Daniel Coelho De Castro
Konstantinos Kamnitsas
Ben Glocker
OOD
90
688
0
29 Oct 2019
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter
Victor Sanh
Lysandre Debut
Julien Chaumond
Thomas Wolf
94
7,386
0
02 Oct 2019
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
103
769
0
12 Nov 2018
Deep CORAL: Correlation Alignment for Deep Domain Adaptation
Baochen Sun
Kate Saenko
OOD
45
3,123
0
06 Jul 2016
Causal inference using invariant prediction: identification and confidence intervals
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
70
961
0
06 Jan 2015
1